2024
Authors
Oliveira, MA; Guimaraes, L; Borges, JL; Almada-Lobo, B;
Publication
MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE, LOD 2023, PT I
Abstract
Maintaining process quality is one of the biggest challenges manufacturing industries face, as production processes have become increasingly complex and difficult to monitor effectively in today's manufacturing contexts. Reliance on skilled operators can result in suboptimal solutions, impacting process quality. In doing so, the importance of quality monitoring and diagnosis methods cannot be undermined. Existing approaches have limitations, including assumptions, prior knowledge requirements, and unsuitability for certain data types. To address these challenges, we present a novel unsupervised monitoring and detection methodology to monitor and evaluate the evolution of a quality characteristic's degradation. To measure the degradation we created a condition index that effectively captures the quality characteristic's mean and scale shifts from the company's specification levels. No prior knowledge or data assumptions are required, making it highly flexible and adaptable. By transforming the unsupervised problem into a supervised one and utilising historical production data, we employ logistic regression to predict the quality characteristic's conditions and diagnose poor condition moments by taking advantage of the model's interpretability. We demonstrate the methodology's application in a glass container production process, specifically monitoring multiple defective rates. Nonetheless, our approach is versatile and can be applied to any quality characteristic. The ultimate goal is to provide decision-makers and operators with a comprehensive view of the production process, enabling better-informed decisions and overall product quality improvement.
2025
Authors
Oliveira, MA; Guimaraes, L; Borges, JL; Almada-Lobo, B;
Publication
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH
Abstract
Ensuring process quality in modern manufacturing is increasingly challenging due to the complexity of production processes and reliance on skilled operators, which can lead to suboptimal solutions and poor quality. To address these challenges, we introduce a novel, unsupervised, robust, nonparametric control chart for Phase II monitoring. This chart tracks the degradation of a quality characteristic using a condition index that captures mean and scale shifts without relying on assumptions, offering high flexibility and adaptability. Comparative studies with state-of-the-art nonparametric schemes demonstrate faster detection capabilities and competitive accuracy across various scenarios. We validate our approach through its application in the glass container production process, showcasing its effectiveness in monitoring multiple defective rates. Although tested on defective rates, the methodology is adaptable to any quantifiable quality characteristic.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.