Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by José Miguel Almeida

2006

Simultaneous control, navigation and target tracking for robotic formations

Authors
Almeida, JM; Martins, A; Silva, EP; Pereira, FL;

Publication
IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems

Abstract
This paper describes a preliminary and innovative approach to integrated cooperative control and navigation of multi robots dynamic formations that encompasses the simultaneous tracking of opponent team players in robotic football games. Unlike traditional approaches that use self-localization to distribute object position estimates, a coordinated approach to cooperative formation navigation is proposed. The control architecture is based in a hierarchic hybrid systems approach, where distributed maneuvers allow simultaneous navigation and coordination. Our main contributions reside in an integrated control and navigation design framework yielding cooperative localization maneuvers and also some specific maneuver results on both formation estimation and global localization of two robots and two landmarks with bearing only measurements. © 2006 IEEE.

2009

Manoeuvre Based Mission Control System for Autonomous Surface Vehicle

Authors
Dias, N; Almeida, C; Ferreira, H; Almeida, J; Martins, A; Dias, A; Silva, E;

Publication
OCEANS 2009 - EUROPE, VOLS 1 AND 2

Abstract
In this work the mission control and supervision system developed for the ROAZ Autonomous Surface Vehicle is presented. Complexity in mission requirements coupled with flexibility lead to the design of a modular hierarchical mission control system based on hybrid systems control. Monitoring and supervision control for a vehicle such as ROAZ mission is not an easy task using tools with low complexity and yet powerful enough. A set of tools were developed to perform both on board mission control and remote planning and supervision. "ROAZ- Mission Control" was developed to be used in support to bathymetric and security missions performed in river and at seas.

2009

Radar Based Collision detection developments on USV ROAZ II

Authors
Almeida, C; Franco, T; Ferreira, H; Martins, A; Santos, R; Almeida, JM; Carvalho, J; Silva, E;

Publication
OCEANS 2009 - EUROPE, VOLS 1 AND 2

Abstract
This work presents the integration of obstacle detection and analysis capabilities in a coherent and advanced C&C framework allowing mixed-mode control in unmanned surface systems. The collision avoidance work has been successfully integrated in an operational autonomous surface vehicle and demonstrated in real operational conditions. We present the collision avoidance system, the ROAZ autonomous surface vehicle and the results obtained at sea tests. Limitations of current COTS radar systems are also discussed and further research directions are proposed towards the development and integration of advanced collision avoidance systems taking in account the different requirements in unmanned surface vehicles

2009

Autonomous Bathymetry for Risk Assessment with ROAZ Robotic Surface Vehicle

Authors
Ferreira, H; Almeida, C; Martins, A; Almeida, J; Dias, N; Dias, A; Silva, E;

Publication
OCEANS 2009 - EUROPE, VOLS 1 AND 2

Abstract
The use of unmanned marine robotic vehicles in bathymetric surveys is discussed. This paper presents recent results in autonomous bathymetric missions with the ROAZ autonomous surface vehicle. In particular, robotic surface vehicles such as ROAZ provide an efficient tool in risk assessment for shallow water environments and water land interface zones as the near surf zone in marine coast. ROAZ is an ocean capable catamaran for distinct oceanographic missions, and with the goal to fill the gap were other hydrographic surveys vehicles/systems are not compiled to operate, like very shallow water rivers and marine coastline surf zones. Therefore, the use of robotic systems for risk assessment is validated through several missions performed either in river scenario (in a very shallow water conditions) and in marine coastlines.

2007

SWORDFISH: an autonomous surface vehicle for network centric operations

Authors
Ferreira, H; Martins, R; Marques, E; Pinto, J; Martins, A; Almeida, J; Sousa, J; Silva, EP;

Publication
OCEANS 2007 - EUROPE, VOLS 1-3

Abstract
The design and development of the Swordfish Autonomous Surface Vehicle (ASV) system is discussed. Swordfish is an ocean capable 4.5m long catamaran designed for network centric operations (with ocean and air going vehicles and human operators). In the basic configuration, Swordfish is both a survey vehicle and a communications node with gateways for broadband, Wi-Fi and GSM transports and underwater acoustic modems. In another configuration, Swordfish mounts a docking station for the autonomous underwater vehicle Isurus from Porto University. Swordfish has an advanced control architecture for multi-vehicle operations with mixed initiative interactions (human operators are allowed to interact with the control loops).

2008

A real time vision system for autonomous systems: Characterization during a middle size match

Authors
Silva, H; Almeida, JM; Lima, L; Martins, A; Silva, EP;

Publication
ROBOCUP 2007: ROBOT SOCCER WORLD CUP XI

Abstract
This paper propose a real-time vision framework for mobile robotics and describes the current implementation. The pipeline structure further reduces latency and allows a paralleled hardware implementation. A dedicated hardware vision sensor was developed in order to take advantage of the proposed architecture. The real-time characteristics and hardware partial implementation, coupled with low energy consumption address typical autonomous systems applications. A characterization of the implemented system in the Robocup scenario, during competition matches, is presented.

  • 16
  • 21