2022
Authors
Tavares, PC; Gomes, EF; Henriques, PR; Vieira, DM;
Publication
Open Education Studies
Abstract
Computer Programming Learners usually fail to get approved in introductory courses because solving problems using computers is a complex task. The most important reason for that failure is concerned with motivation; motivation strongly impacts on the learning process. In this paper we discuss how techniques like program animation, and automatic evaluation can be combined to help the teacher in Computer Programming courses. In the article, PEP system will be introduced to explain how it supports teachers in classroom and how it engages students on study sessions outside the classroom. To support that work, students' motivation was studied; to complement that study, a survey involving students attending the first year of Algorithms and Programming course of an Engineering degree was done. It is also presented a tool to analyse surveys, using association rules. © 2022 Paula Correia Tavares et al., published by De Gruyter.
2022
Authors
Carvalho, S; Gomes, EF;
Publication
VIETNAM JOURNAL OF COMPUTER SCIENCE
Abstract
Bird species identification is a relevant and time-consuming task for ornithologists and ecologists. With growing amounts of audio-annotated data, automatic bird classification using machine learning techniques is an important trend in the scientific community. Analyzing bird behavior and population trends helps detect other organisms in the environment and is an important problem in ecology. Bird populations react quickly to environmental changes, which make their real-time counting and tracking challenging and very useful. A reliable methodology that automatically identifies bird species from audio would therefore be a valuable tool for the experts in different scientific and applicational domains. The goal of this work is to propose a methodology to identify bird sounds. In this paper, we explore deep learning techniques that are being used in this domain, such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) to classify the data. In deep learning, audio problems are commonly approached by converting them into images using audio feature extraction techniques such as Mel Spectrograms and Mel Frequency Cepstral Coefficients (MFCCs). We propose and test multiple deep learning and feature extraction combinations in order to find the most suitable approach to this problem.
2022
Authors
Maio, P; Sousa, P; Ferreira, C; Gomes, E;
Publication
Proceedings of the International CDIO Conference
Abstract
Despite the important advances observed, nowadays, the Engineering programmes keep being challenged to better prepare their students to work on complex and multidisciplinary projects while demonstrating awareness of environmental and socio-economic issues and other soft skills as communication and teamwork. Recently, to meet these challenges, the ISEP' Informatics Engineering programme (LEI) successfully adopted a project-based learning approach. In this approach, throughout the entire semester, students develop a real-world project that allows the application and assessment of the competencies taught by all course units of the semester in an integrated, multidisciplinary, and transversal way. In this paper, the authors (i) present this approach as well as the main challenges faced in implementing it; (ii) report the major findings and the perceived benefits and drawbacks; and (iii) discuss the ongoing adaptations and/or others seen as required to improve the approach and its results. © CDIO 2022.All rights reserved.
2022
Authors
Moreno, M; Vilaca, R; Ferreira, PG;
Publication
BMC BIOINFORMATICS
Abstract
Background: Gene expression studies are an important tool in biological and biomedical research. The signal carried in expression profiles helps derive signatures for the prediction, diagnosis and prognosis of different diseases. Data science and specifically machine learning have many applications in gene expression analysis. However, as the dimensionality of genomics datasets grows, scalable solutions become necessary. Methods: In this paper we review the main steps and bottlenecks in machine learning pipelines, as well as the main concepts behind scalable data science including those of concurrent and parallel programming. We discuss the benefits of the Dask framework and how it can be integrated with the Python scientific environment to perform data analysis in computational biology and bioinformatics. Results: This review illustrates the role of Dask for boosting data science applications in different case studies. Detailed documentation and code on these procedures is made available at https:// github. com/martaccmoreno/gexp-ml-dask. Conclusion: By showing when and how Dask can be used in transcriptomics analysis, this review will serve as an entry point to help genomic data scientists develop more scalable data analysis procedures.
2022
Authors
Baptista, D; Ferreira, PG; Rocha, M;
Publication
Abstract
2022
Authors
Pinto, H; Pernice, R; Silva, ME; Javorka, M; Faes, L; Rocha, AP;
Publication
PHYSIOLOGICAL MEASUREMENT
Abstract
Objective. In this work, an analytical framework for the multiscale analysis of multivariate Gaussian processes is presented, whereby the computation of Partial Information Decomposition measures is achieved accounting for the simultaneous presence of short-term dynamics and long-range correlations. Approach. We consider physiological time series mapping the activity of the cardiac, vascular and respiratory systems in the field of Network Physiology. In this context, the multiscale representation of transfer entropy within the network of interactions among Systolic arterial pressure (S), respiration (R) and heart period (H), as well as the decomposition into unique, redundant and synergistic contributions, is obtained using a Vector AutoRegressive Fractionally Integrated (VARFI) framework for Gaussian processes. This novel approach allows to quantify the directed information flow accounting for the simultaneous presence of short-term dynamics and long-range correlations among the analyzed processes. Additionally, it provides analytical expressions for the computation of the information measures, by exploiting the theory of state space models. The approach is first illustrated in simulated VARFI processes and then applied to H, S and R time series measured in healthy subjects monitored at rest and during mental and postural stress. Main Results. We demonstrate the ability of the VARFI modeling approach to account for the coexistence of short-term and long-range correlations in the study of multivariate processes. Physiologically, we show that postural stress induces larger redundant and synergistic effects from S and R to H at short time scales, while mental stress induces larger information transfer from S to H at longer time scales, thus evidencing the different nature of the two stressors. Significance. The proposed methodology allows to extract useful information about the dependence of the information transfer on the balance between short-term and long-range correlations in coupled dynamical systems, which cannot be observed using standard methods that do not consider long-range correlations.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.