2020
Authors
Cerri, R; Costa Júnior, JD; Faria Paiva, ERd; da Gama, JMP;
Publication
CoRR
Abstract
2020
Authors
Cavadas, B; Camacho, R; Ferreira, JC; Ferreira, RM; Figueiredo, C; Brazma, A; Fonseca, NA; Pereira, L;
Publication
MICROORGANISMS
Abstract
The human gastrointestinal tract harbors approximately 100 trillion microorganisms with different microbial compositions across geographic locations. In this work, we used RNASeq data from stomach samples of non-disease (164 individuals from European ancestry) and gastric cancer patients (137 from Europe and Asia) from public databases. Although these data were intended to characterize the human expression profiles, they allowed for a reliable inference of the microbiome composition, as confirmed from measures such as the genus coverage, richness and evenness. The microbiome diversity (weighted UniFrac distances) in gastric cancer mimics host diversity across the world, with European gastric microbiome profiles clustering together, distinct from Asian ones. Despite the confirmed loss of microbiome diversity from a healthy status to a cancer status, the structured profile was still recognized in the disease condition. In concordance with the parallel host-bacteria population structure, we found 16 human loci (non-synonymous variants) in the European-descendent cohorts that were significantly associated with specific genera abundance. These microbiome quantitative trait loci display heterogeneity between population groups, being mainly linked to the immune system or cellular features that may play a role in enabling microbe colonization and inflammation.
2020
Authors
The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium,;
Publication
NATURE
Abstract
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).
2020
Authors
Teixeira, M; Martins, L; Fernandes, C; Chaves, C; Pinto, J; Tavares, F; Fonseca, NA;
Publication
MICROBIOLOGY RESOURCE ANNOUNCEMENTS
Abstract
We present the complete genome sequences of two Xanthomonas euroxanthea strains isolated from buds of a walnut tree. The whole-genome sequences of strains CPBF 367 and CPBF 426 consist of two circular chromosomes of 4,923,218 bp and 4,883,254 bp and two putative plasmids of 45,241 bp and 17,394 bp, respectively. These data may contribute to the understanding of Xanthomonas species-specific adaptations to walnut.
2020
Authors
Papatheodorou, I; Moreno, P; Manning, J; Fuentes, AMP; George, N; Fexova, S; Fonseca, NA; Fullgrabe, A; Green, M; Huang, N; Huerta, L; Lqbal, H; Jianu, M; Mohammed, S; Zhao, LY; Jarnuczak, AF; Jupp, S; Marioni, J; Meyer, K; Petryszak, R; Medina, CAP; Talavera Lopez, C; Teichmann, S; Vizcaino, JA; Brazma, A;
Publication
NUCLEIC ACIDS RESEARCH
Abstract
Expression Atlas is EMBL-EBI's resource for gene and protein expression. It sources and compiles data on the abundance and localisation of RNA and proteins in various biological systems and contexts and provides open access to this data for the research community. With the increased availability of single cell RNA-Seq datasets in the public archives, we have now extended Expression Atlas with a new added-value service to display gene expression in single cells. Single Cell Expression Atlas was launched in 2018 and currently includes 123 single cell RNA-Seq studies from 12 species. The website can be searched by genes within or across species to reveal experiments, tissues and cell types where this gene is expressed or under which conditions it is a marker gene. Within each study, cells can be visualized using a pre-calculated t-SNE plot and can be coloured by different features or by cell clusters based on gene expression. Within each experiment, there are links to downloadable files, such as RNA quantification matrices, clustering results, reports on protocols and associated metadata, such as assigned cell types.
2020
Authors
Calabrese, C; PCAWG Transcriptome Core Group,; Davidson, NR; Demircioglu, D; Fonseca, NA; He, Y; Kahles, A; Lehmann, K; Liu, F; Shiraishi, Y; Soulette, CM; Urban, L; Greger, L; Li, S; Liu, D; Perry, MD; Xiang, Q; Zhang, F; Zhang, J; Bailey, P; Erkek, S; Hoadley, KA; Hou, Y; Huska, MR; Kilpinen, H; Korbel, JO; Marin, MG; Markowski, J; Nandi, T; Pan-Hammarström, Q; Pedamallu, CS; Siebert, R; Stark, SG; Su, H; Tan, P; Waszak, SM; Yung, C; Zhu, S; Awadalla, P; Creighton, CJ; Meyerson, M; Ouellette, BFF; Wu, K; Yang, H; Brazma, A; Brooks, AN; Göke, J; Rätsch, G; Schwarz, RF; Stegle, O; Zhang, Z; PCAWG Transcriptome Working Group,; PCAWG Consortium,;
Publication
Nat.
Abstract
Transcript alterations often result from somatic changes in cancer genomes1. Various forms of RNA alterations have been described in cancer, including overexpression2, altered splicing3 and gene fusions4; however, it is difficult to attribute these to underlying genomic changes owing to heterogeneity among patients and tumour types, and the relatively small cohorts of patients for whom samples have been analysed by both transcriptome and whole-genome sequencing. Here we present, to our knowledge, the most comprehensive catalogue of cancer-associated gene alterations to date, obtained by characterizing tumour transcriptomes from 1,188 donors of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA)5. Using matched whole-genome sequencing data, we associated several categories of RNA alterations with germline and somatic DNA alterations, and identified probable genetic mechanisms. Somatic copy-number alterations were the major drivers of variations in total gene and allele-specific expression. We identified 649 associations of somatic single-nucleotide variants with gene expression in cis, of which 68.4% involved associations with flanking non-coding regions of the gene. We found 1,900 splicing alterations associated with somatic mutations, including the formation of exons within introns in proximity to Alu elements. In addition, 82% of gene fusions were associated with structural variants, including 75 of a new class, termed ‘bridged’ fusions, in which a third genomic location bridges two genes. We observed transcriptomic alteration signatures that differ between cancer types and have associations with variations in DNA mutational signatures. This compendium of RNA alterations in the genomic context provides a rich resource for identifying genes and mechanisms that are functionally implicated in cancer. © 2020, The Author(s).
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.