Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by HASLab

2016

An Ontology for Licensing Public Transport Services

Authors
Cledou, G; Barbosa, LS;

Publication
9TH INTERNATIONAL CONFERENCE ON THEORY AND PRACTICE OF ELECTRONIC GOVERNANCE (ICEGOV 2016)

Abstract
By 2050 it is expected that 66% of the world population will reside in cities, compared to 54% in 2014. One particular challenge associated to urban population growth refers to transportation systems, and as an approach to face it, governments are investing significant efforts enhancing public transport services. An important aspect of public transport is ensuring that licensing of such services fulfill existing government regulations. Due to the differences in government regulations, and to the difficulties in ensuring the fulfillment of their specific features, many local governments develop tailored Information and Communication Technology (ICT) solutions to automate the licensing of public transport services. In this paper we propose an ontology for licensing such services following the REFSENO methodology. In particular, the ontology captures common concepts involved in the application and processing stage of licensing public bus passenger services. The main contribution of the proposed ontology is to define a common vocabulary to share knowledge between domain experts and software engineers, and to support the definition of a software product line for families of public transport licensing services.

2016

Proof theory for hybrid(ised) logics

Authors
Neves, R; Madeira, A; Martins, MA; Barbosa, LS;

Publication
SCIENCE OF COMPUTER PROGRAMMING

Abstract
Hybridisation is a systematic process along which the characteristic features of hybrid logic, both at the syntactic and the semantic levels, are developed on top of an arbitrary logic framed as an institution. In a series of papers this process has been detailed and taken as a basis for a specification methodology for reconfigurable systems. The present paper extends this work by showing how a proof calculus (in both a Hilbert and a tableau based format) for the hybridised version of a logic can be systematically generated from a proof calculus for the latter. Such developments provide the basis for a complete proof theory for hybrid(ised) logics, and thus pave the way to the development of (dedicated) proof support.

2016

Continuity as a computational effect

Authors
Neves, R; Barbosa, LS; Hofmann, D; Martins, MA;

Publication
JOURNAL OF LOGICAL AND ALGEBRAIC METHODS IN PROGRAMMING

Abstract
The original purpose of component-based development was to provide techniques to master complex software, through composition, reuse and parametrisation. However, such systems are rapidly moving towards a level in which software becomes prevalently intertwined with (continuous) physical processes. A possible way to accommodate the latter in component calculi relies on a suitable encoding of continuous behaviour as (yet another) computational effect. This paper introduces such an encoding through a monad which, in the compositional development of hybrid systems, may play a role similar to the one played by 1+, powerset, and distribution monads in the characterisation of partial, nondeterministic and probabilistic components, respectively. This monad and its Kleisli category provide a universe in which the effects of continuity over (different forms of) composition can be suitably studied.

2016

Reuse and Integration of Specification Logics: The Hybridisation Perspective

Authors
Barbosa, LS; Martins, MA; Madeira, A; Neves, R;

Publication
Theoretical Information Reuse and Integration

Abstract
Hybridisation is a systematic process along which the characteristic features of hybrid logic, both at the syntactic and the semantic levels, are developed on top of an arbitrary logic framed as an institution. It also captures the construction of first-order encodings of such hybridised institutions into theories in first-order logic. The method was originally developed to build suitable logics for the specification of reconfigurable software systems on top of whatever logic is used to describe local requirements of each system’s configuration. Hybridisation has, however, a broader scope, providing a fresh example of yet another development in combining and reusing logics driven by a problem from Computer Science. This paper offers an overview of this method, proposes some new extensions, namely the introduction of full quantification leading to the specification of dynamic modalities, and exemplifies its potential through a didactical application. It is discussed how hybridisation can be successfully used in a formal specification course in which students progress from equational to hybrid specifications in a uniform setting, integrating paradigms, combining data and behaviour, and dealing appropriately with systems evolution and reconfiguration. © Springer International Publishing Switzerland 2016.

2016

Asymmetric Combination of Logics is Functorial: A Survey

Authors
Neves, R; Madeira, A; Barbosa, LS; Martins, MA;

Publication
Recent Trends in Algebraic Development Techniques - 23rd IFIP WG 1.3 International Workshop, WADT 2016, Gregynog, UK, September 21-24, 2016, Revised Selected Papers

Abstract
Asymmetric combination of logics is a formal process that develops the characteristic features of a specific logic on top of another one. Typical examples include the development of temporal, hybrid, and probabilistic dimensions over a given base logic. These examples are surveyed in the paper under a particular perspective—that this sort of combination of logics possesses a functorial nature. Such a view gives rise to several interesting questions. They range from the problem of combining translations (between logics), to that of ensuring property preservation along the process, and the way different asymmetric combinations can be related through appropriate natural transformations.

2016

Quien sabe por Algebra, sabe scientificamente: A tribute to José Nuno Oliveira

Authors
Barbosa, LS; Cunha, A; Silva, A;

Publication
J. Log. Algebr. Meth. Program.

Abstract

  • 124
  • 261