2016
Authors
Machado, N; Maia, F; Matos, M; Oliveira, R;
Publication
2016 SEVENTH LATIN-AMERICAN SYMPOSIUM ON DEPENDABLE COMPUTING (LADC)
Abstract
A distributed system is often built on top of an overlay network. Overlay networks enable network topology transparency while, at the same time, can be designed to provide efficient data dissemination, load balancing, and even fault tolerance. They are constructed by defining logical links between nodes creating a node graph. In practice, this is materialized by a Peer Sampling Service (PSS) that provides references to other nodes to communicate with. Depending on the configuration of the PSS, the characteristics of the overlay can be adjusted to cope with application requirements and performance concerns. Unfortunately, overlay efficiency comes at the expense of dependability. To overcome this, one often deploys an application overlay focused on efficiency, along with a safety-net overlay to ensure dependability. However, this approach results in significant resource waste since safety-net overlays are seldom used. In this paper, we focus on safety-net overlay networks and propose an adaptable mechanism to minimize resource usage while maintaining dependability guarantees. In detail, we consider a random overlay network, known to be highly dependable, and propose BUZZPSS, a new Peer Sampling Service that is able to autonomously fine-tune its resource consumption usage according to the observed system stability. When the system is stable and connectivity is not at risk, BUZZPSS autonomously changes its behavior to save resources. Alongside, it is also able to detect system instability and act accordingly to guarantee that the overlay remains operational. Through an experimental evaluation, we show that BUZZPSS is able to autonomously adapt to the system stability levels, consuming up to 6x less resources than a static approach.
2016
Authors
Coelho, F; Pereira, J; Vilaca, R; Oliveira, R;
Publication
DISTRIBUTED APPLICATIONS AND INTEROPERABLE SYSTEMS, DAIS 2016
Abstract
Window functions are a sub-class of analytical operators that allow data to be handled in a derived view of a given relation, while taking into account their neighboring tuples. Currently, systems bypass parallelization opportunities which become especially relevant when considering Big Data as data is naturally partitioned. We present a shuffling technique to improve the parallel execution of window functions when data is naturally partitioned when the query holds a partitioning clause that does not match the natural partitioning of the relation. We evaluated this technique with a non-cumulative ranking function and we were able to reduce data transfer among parallel workers in 85% when compared to a naive approach.
2016
Authors
Burihabwa, D; Pontes, R; Felber, P; Maia, F; Mercier, H; Oliveira, R; Paulo, J; Schiavoni, V;
Publication
PROCEEDINGS OF 2016 IEEE 35TH SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS (SRDS)
Abstract
Cloud-based storage services such as Dropbox, Google Drive and OneDrive are increasingly popular for storing enterprise data, and they have already become the de facto choice for cloud-based backup of hundreds of millions of regular users. Drawn by the wide range of services they provide, no upfront costs and 24/7 availability across all personal devices, customers are well-aware of the benefits that these solutions can bring. However, most users tend to forget-or worse ignore-some of the main drawbacks of such cloud-based services, namely in terms of privacy. Data entrusted to these providers can be leaked by hackers, disclosed upon request from a governmental agency's subpoena, or even accessed directly by the storage providers (e.g., for commercial benefits). While there exist solutions to prevent or alleviate these problems, they typically require direct intervention from the clients, like encrypting their data before storing it, and reduce the benefits provided such as easily sharing data between users. This practical experience report studies a wide range of security mechanisms that can be used atop standard cloud-based storage services. We present the details of our evaluation testbed and discuss the design choices that have driven its implementation. We evaluate several state-of-the-art techniques with varying security guarantees responding to user-assigned security and privacy criteria. Our results reveal the various trade-offs of the different techniques by means of representative workloads on top of industry-grade storage services.
2016
Authors
Coelho, F; Pereira, J; Vilaca, R; Oliveira, R;
Publication
PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND SERVICES SCIENCE, VOL 1 (CLOSER)
Abstract
Window functions are a sub-class of analytical operators that allow data to be handled in a derived view of a given relation, while taking into account their neighboring tuples. We propose a technique that can be used in the parallel execution of this operator when data is naturally partitioned. The proposed method benefits the cases where the required partitioning is not the natural partitioning employed. Preliminary evaluation shows that we are able to limit data transfer among parallel workers to 14% of the registered transfer when using a naive approach.
2016
Authors
Cruz, F; Maia, F; Matos, M; Oliveira, R; Paulo, J; Pereira, J; Vilaca, R;
Publication
DISTRIBUTED APPLICATIONS AND INTEROPERABLE SYSTEMS, DAIS 2016
Abstract
In order to attain the promises of the Cloud Computing paradigm, systems need to be able to transparently adapt to environment changes. Such behavior benefits from the ability to predict those changes in order to handle them seamlessly. In this paper, we present a mechanism to accurately predict the resource usage of distributed key-value datastores. Our mechanism requires offline training but, in contrast with other approaches, it is sufficient to run it only once per hardware configuration and subsequently use it for online prediction of database performance under any circumstance. The mechanism accurately estimates the database resource usage for any request distribution with an average accuracy of 94 %, only by knowing two parameters: (i) cache hit ratio; and (ii) incoming throughput. Both input values can be observed in real time or synthesized for request allocation decisions. This novel approach is sufficiently simple and generic, while simultaneously being suitable for other practical applications.
2016
Authors
Cruz, F; Coelho, F; Oliveira, R;
Publication
PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND SERVICES SCIENCE, VOL 1 (CLOSER)
Abstract
Buffer caching mechanisms are paramount to improve the performance of today's massive scale NoSQL databases. In this work, we show that in fact there is a direct and univocal relationship between the resource usage and the cache hit ratio in NoSQL databases. In addition, this relationship can be leveraged to build a mechanism that is able to estimate resource usage of the nodes composing the NoSQL cluster.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.