2025
Authors
da Silva, JMPP; Duarte Nunes, G; Ferreira, A;
Publication
Abstract
2025
Authors
Yamamura, F; Scalassara, R; Oliveira, A; Ferreira, JS;
Publication
U.Porto Journal of Engineering
Abstract
Whispers are common and essential for secondary communication. Nonetheless, individuals with aphonia, including laryngectomees, rely on whispers as their primary means of communication. Due to the distinct features between whispered and regular speech, debates have emerged in the field of speech recognition, highlighting the challenge of effectively converting between them. This study investigates the characteristics of whispered speech and proposes a system for converting whispered vowels into normal ones. The system is developed using multilayer perceptron networks and two types of generative adversarial networks. Three metrics are analyzed to evaluate the performance of the system: mel-cepstral distortion, root mean square error of the fundamental frequency, and accuracy with f1-score of a vowel classifier. Overall, the perceptron networks demonstrated better results, with no significant differences observed between male and female voices or the presence/absence of speech silence, except for improved accuracy in estimating the fundamental frequency during the conversion process. © 2025, Universidade do Porto - Faculdade de Engenharia. All rights reserved.
2025
Authors
Simões, C; Coelho, A; Ricardo, M;
Publication
20th Wireless On-Demand Network Systems and Services Conference, WONS 2025, Hintertux, Austria, January 27-29, 2025
Abstract
2025
Authors
Shafafi, K; Ricardo, M; Campos, R;
Publication
CoRR
Abstract
2025
Authors
Caetano, R; Oliveira, JM; Ramos, P;
Publication
MATHEMATICS
Abstract
Accurate demand forecasting is essential for retail operations as it directly impacts supply chain efficiency, inventory management, and financial performance. However, forecasting retail time series presents significant challenges due to their irregular patterns, hierarchical structures, and strong dependence on external factors such as promotions, pricing strategies, and socio-economic conditions. This study evaluates the effectiveness of Transformer-based architectures, specifically Vanilla Transformer, Informer, Autoformer, ETSformer, NSTransformer, and Reformer, for probabilistic time series forecasting in retail. A key focus is the integration of explanatory variables, such as calendar-related indicators, selling prices, and socio-economic factors, which play a crucial role in capturing demand fluctuations. This study assesses how incorporating these variables enhances forecast accuracy, addressing a research gap in the comprehensive evaluation of explanatory variables within multiple Transformer-based models. Empirical results, based on the M5 dataset, show that incorporating explanatory variables generally improves forecasting performance. Models leveraging these variables achieve up to 12.4% reduction in Normalized Root Mean Squared Error (NRMSE) and 2.9% improvement in Mean Absolute Scaled Error (MASE) compared to models that rely solely on past sales. Furthermore, probabilistic forecasting enhances decision making by quantifying uncertainty, providing more reliable demand predictions for risk management. These findings underscore the effectiveness of Transformer-based models in retail forecasting and emphasize the importance of integrating domain-specific explanatory variables to achieve more accurate, context-aware predictions in dynamic retail environments.
2025
Authors
Costa, V; Oliveira, JM; Ramos, P;
Publication
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.