Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CTM

2025

Comparing 2D and 3D Feature Extraction Methods for Lung Adenocarcinoma Prediction Using CT Scans: A Cross-Cohort Study

Authors
Gouveia, M; Mendes, T; Rodrigues, EM; Oliveira, HP; Pereira, T;

Publication
APPLIED SCIENCES-BASEL

Abstract
Lung cancer stands as the most prevalent and deadliest type of cancer, with adenocarcinoma being the most common subtype. Computed Tomography (CT) is widely used for detecting tumours and their phenotype characteristics, for an early and accurate diagnosis that impacts patient outcomes. Machine learning algorithms have already shown the potential to recognize patterns in CT scans to classify the cancer subtype. In this work, two distinct pipelines were employed to perform binary classification between adenocarcinoma and non-adenocarcinoma. Firstly, radiomic features were classified by Random Forest and eXtreme Gradient Boosting classifiers. Next, a deep learning approach, based on a Residual Neural Network and a Transformer-based architecture, was utilised. Both 2D and 3D CT data were initially explored, with the Lung-PET-CT-Dx dataset being employed for training and the NSCLC-Radiomics and NSCLC-Radiogenomics datasets used for external evaluation. Overall, the 3D models outperformed the 2D ones, with the best result being achieved by the Hybrid Vision Transformer, with an AUC of 0.869 and a balanced accuracy of 0.816 on the internal test set. However, a lack of generalization capability was observed across all models, with the performances decreasing on the external test sets, a limitation that should be studied and addressed in future work.

2025

Efficient-Proto-Caps: A Parameter-Efficient and Interpretable Capsule Network for Lung Nodule Characterization

Authors
Rodrigues, EM; Gouveia, M; Oliveira, HP; Pereira, T;

Publication
IEEE Access

Abstract
Deep learning techniques have demonstrated significant potential in computer-assisted diagnosis based on medical imaging. However, their integration into clinical workflows remains limited, largely due to concerns about interpretability. To address this challenge, we propose Efficient-Proto-Caps, a lightweight and inherently interpretable model that combines capsule networks with prototype learning for lung nodule characterization. Additionally, an innovative Davies-Bouldin Index with multiple centroids per cluster is employed as a loss function to promote clustering of lung nodule visual attribute representations. When evaluated on the LIDC-IDRI dataset, the most widely recognized benchmark for lung cancer prediction, our model achieved an overall accuracy of 89.7 % in predicting lung nodule malignancy and associated visual attributes. This performance is statistically comparable to that of the baseline model, while utilizing a backbone with only approximately 2 % of the parameters of the baseline model’s backbone. State-of-the-art models achieved better performance in lung nodule malignancy prediction; however, our approach relies on multiclass malignancy predictions and provides a decision rationale aligned with globally accepted clinical guidelines. These results underscore the potential of our approach, as the integration of lightweight and less complex designs into accurate and inherently interpretable models represents a significant advancement toward more transparent and clinically viable computer-assisted diagnostic systems. Furthermore, these findings highlight the model’s potential for broader applicability, extending beyond medicine to other domains where final classifications are grounded in concept-based or example-based attributes. © 2013 IEEE.

2025

Generative adversarial networks with fully connected layers to denoise PPG signals

Authors
Castro, IAA; Oliveira, HP; Correia, R; Hayes-Gill, B; Morgan, SP; Korposh, S; Gomez, D; Pereira, T;

Publication
PHYSIOLOGICAL MEASUREMENT

Abstract
Objective.The detection of arterial pulsating signals at the skin periphery with Photoplethysmography (PPG) are easily distorted by motion artifacts. This work explores the alternatives to the aid of PPG reconstruction with movement sensors (accelerometer and/or gyroscope) which to date have demonstrated the best pulsating signal reconstruction. Approach. A generative adversarial network with fully connected layers is proposed for the reconstruction of distorted PPG signals. Artificial corruption was performed to the clean selected signals from the BIDMC Heart Rate dataset, processed from the larger MIMIC II waveform database to create the training, validation and testing sets. Main results. The heart rate (HR) of this dataset was further extracted to evaluate the performance of the model obtaining a mean absolute error of 1.31 bpm comparing the HR of the target and reconstructed PPG signals with HR between 70 and 115 bpm. Significance. The model architecture is effective at reconstructing noisy PPG signals regardless the length and amplitude of the corruption introduced. The performance over a range of HR (70-115 bpm), indicates a promising approach for real-time PPG signal reconstruction without the aid of acceleration or angular velocity inputs.

2025

CINDERELLA Clinical Trial (NCT05196269): Patient Engagement with an AI-based Healthcare Application for Enhancing Breast Cancer Locoregional Treatment Decisions- Preliminary Insights

Authors
Bonci, EA; Antunes, M; Bobowicz, M; Borsoi, L; Ciani, O; Cruz, HV; Di Micco, R; Ekman, M; Gentilini, O; Romariz, M; Gonçalves, T; Gouveia, P; Heil, J; Kabata, P; Kaidar Person, O; Martins, H; Mavioso, C; Mika, M; Oliveira, HP; Oprea, N; Pfob, A; Haik, J; Menes, T; Schinköthe, T; Silva, G; Cardoso, JS; Cardoso, MJ;

Publication
BREAST

Abstract

2025

A Two-Stage U-Net Framework for Interactive Segmentation of Lung Nodules in CT Scans

Authors
Fernandes, L; Pereira, T; Oliveira, HP;

Publication
IEEE ACCESS

Abstract
Segmentation of lung nodules in CT images is an important step during the clinical evaluation of patients with lung cancer. Furthermore, early assessment of the cancer is crucial to increase the overall survival chances of patients with such disease, and the segmentation of lung nodules can help detect the cancer in its early stages. Consequently, there are many works in the literature that explore the use of neural networks for the segmentation of lung nodules. However, these frameworks tend to rely on accurate labelling of the nodule centre to then crop the input image. Although such works are able to achieve remarkable results, they do not take into account that the healthcare professional may fail to correctly label the centre of the nodule. Therefore, in this work, we propose a new framework based on the U-Net model that allows to correct such inaccuracies in an interactive fashion. It is composed of two U-Net models in cascade, where the first model is used to predict a rough estimation of the lung nodule location and the second model refines the generated segmentation mask. Our results show that the proposed framework is able to be more robust than the studied baselines. Furthermore, it is able to achieve state-of-the-art performance, reaching a Dice of 91.12% when trained and tested on the LIDC-IDRI public dataset.

2025

Dissipative pulses stabilized by nonlinear gradient terms: A review of their dynamics and their interaction

Authors
Descalzi, O; Facao, M; Carvalho, MI; Cartes, C; Brand, HR;

Publication
PHYSICA D-NONLINEAR PHENOMENA

Abstract
We study the dynamics as well as the interaction of stable dissipative solitons (DSs) of the cubic complex Ginzburg-Landau equation which are stabilized only by nonlinear gradient (NLG) terms. First we review stationary, periodic, quasi-periodic, and chaotic solutions. Then we investigate sudden transitions to chaotic from periodic and vice versa as a function of one parameter, as well as different outcomes, for fixed parameters, when varying the initial condition. In addition, we present a quasi-analytic approach to evaluate the separation of nearby trajectories for the case of stationary DSs as well as for periodic DSs, both stabilized by nonlinear gradient terms. In a separate section collisions between different types of DSs are reviewed. First we present a concise review of collisions of DSs without NLG terms and then the results of collisions between stationary DSs stabilized by NLG terms are summarized focusing on the influence of the nonlinear gradient term associated with the Raman effect. We point out that both, meandering oscillatory bound states as well as bound states with large amplitude oscillations appear to be specific for coupled cubic complex Ginzburg-Landau equations with a stabilizing cubic nonlinear gradient term.

  • 5
  • 368