2025
Authors
Tame, ID; Tolosana, R; Melzi, P; Rodríguez, RV; Kim, M; Rathgeb, C; Liu, X; Gomez, LF; Morales, A; Fierrez, J; Garcia, JO; Zhong, Z; Huang, Y; Mi, Y; Ding, S; Zhou, S; He, S; Fu, L; Cong, H; Zhang, R; Xiao, Z; Smirnov, E; Pimenov, A; Grigorev, A; Timoshenko, D; Asfaw, KM; Low, CY; Liu, H; Wang, C; Zuo, Q; He, Z; Shahreza, HO; George, A; Unnervik, A; Rahimi, P; Marcel, S; Neto, PC; Huber, M; Kolf, JN; Damer, N; Boutros, F; Cardoso, JS; Sequeira, AF; Atzori, A; Fenu, G; Marras, M; Struc, V; Yu, J; Li, Z; Li, J; Zhao, W; Lei, Z; Zhu, X; Zhang, X; Biesseck, B; Vidal, P; Coelho, L; Granada, R; Menotti, D;
Publication
Inf. Fusion
Abstract
Synthetic data is gaining increasing popularity for face recognition technologies, mainly due to the privacy concerns and challenges associated with obtaining real data, including diverse scenarios, quality, and demographic groups, among others. It also offers some advantages over real data, such as the large amount of data that can be generated or the ability to customize it to adapt to specific problem-solving needs. To effectively use such data, face recognition models should also be specifically designed to exploit synthetic data to its fullest potential. In order to promote the proposal of novel Generative AI methods and synthetic data, and investigate the application of synthetic data to better train face recognition systems, we introduce the 2nd FRCSyn-onGoing challenge, based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024. This is an ongoing challenge that provides researchers with an accessible platform to benchmark (i) the proposal of novel Generative AI methods and synthetic data, and (ii) novel face recognition systems that are specifically proposed to take advantage of synthetic data. We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition such as demographic bias, domain adaptation, and performance constraints in demanding situations, such as age disparities between training and testing, changes in the pose, or occlusions. Very interesting findings are obtained in this second edition, including a direct comparison with the first one, in which synthetic databases were restricted to DCFace and GANDiffFace. © 2025
2025
Authors
Patrício, C; Torto, IR; Cardoso, JS; Teixeira, LF; Neves, JC;
Publication
CoRR
Abstract
2025
Authors
Montenegro, H; Cardoso, MJ; Cardoso, JS;
Publication
CoRR
Abstract
2025
Authors
Vieira, AB; Valente, M; Montezuma, D; Albuquerque, T; Ribeiro, L; Oliveira, D; Monteiro, JC; Gonçalves, S; Pinto, IM; Cardoso, JS; Oliveira, AL;
Publication
CoRR
Abstract
2025
Authors
Caetano, F; Carvalho, P; Mastralexi, C; Cardoso, JS;
Publication
IEEE ACCESS
Abstract
Anomaly Detection has been a significant field in Machine Learning since it began gaining traction. In the context of Computer Vision, the increased interest is notorious as it enables the development of video processing models for different tasks without the need for a cumbersome effort with the annotation of possible events, that may be under represented. From the predominant strategies, weakly and semi-supervised, the former has demonstrated potential to achieve a higher score in its analysis, adding to its flexibility. This work shows that using temporal ranking constraints for Multiple Instance Learning can increase the performance of these models, allowing the focus on the most informative instances. Moreover, the results suggest that altering the ranking process to include information about adjacent instances generates best-performing models.
2025
Authors
Pinto, JR; Cardoso, S;
Publication
Encyclopedia of Cryptography, Security and Privacy, Third Edition
Abstract
[No abstract available]
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.