Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CTM

2019

GarmNet: Improving Global with Local Perception for Robotic Laundry Folding

Authors
Gomes, DF; Luo, S; Teixeira, LF;

Publication
Towards Autonomous Robotic Systems - 20th Annual Conference, TAROS 2019, London, UK, July 3-5, 2019, Proceedings, Part II

Abstract
Developing autonomous assistants to help with domestic tasks is a vital topic in robotics research. Among these tasks, garment folding is one of them that is still far from being achieved mainly due to the large number of possible configurations that a crumpled piece of clothing may exhibit. Research has been done on either estimating the pose of the garment as a whole or detecting the landmarks for grasping separately. However, such works constrain the capability of the robots to perceive the states of the garment by limiting the representations for one single task. In this paper, we propose a novel end-to-end deep learning model named GarmNet that is able to simultaneously localize the garment and detect landmarks for grasping. The localization of the garment represents the global information for recognising the category of the garment, whereas the detection of landmarks can facilitate subsequent grasping actions. We train and evaluate our proposed GarmNet model using the CloPeMa Garment dataset that contains 3,330 images of different garment types in different poses. The experiments show that the inclusion of landmark detection (GarmNet-B) can largely improve the garment localization, with an error rate of 24.7% lower. Solutions as ours are important for robotics applications, as these offer scalable to many classes, memory and processing efficient solutions.

2019

Face Detection in Thermal Images with YOLOv3

Authors
Silva, G; Monteiro, R; Ferreira, A; Carvalho, P; Corte Real, L;

Publication
ADVANCES IN VISUAL COMPUTING, ISVC 2019, PT II

Abstract
The automotive industry is currently focusing on automation in their vehicles, and perceiving the surroundings of an automobile requires the ability to detect and identify objects, events and persons, not only from the outside of the vehicle but also from the inside of the cabin. This constitutes relevant information for defining intelligent responses to events happening on both environments. This work presents a new method for in-vehicle monitoring of passengers, specifically the task of real-time face detection in thermal images, by applying transfer learning with YOLOv3. Using this kind of imagery for this purpose brings some advantages, such as the possibility of detecting faces during the day and in the dark without being affected by illumination conditions, and also because it's a completely passive sensing solution. Due to the lack of suitable datasets for this type of application, a database of in-vehicle images was created, containing images from 38 subjects performing different head poses and at varying ambient temperatures. The tests in our database show an AP50 of 99.7% and an AP of 78.5%.

2019

Stereo vision system for human motion analysis in a rehabilitation context

Authors
Matos, AC; Terroso, TA; Corte Real, L; Carvalho, P;

Publication
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION

Abstract
The present demographic trends point to an increase in aged population and chronic diseases which symptoms can be alleviated through rehabilitation. The applicability of passive 3D reconstruction for motion tracking in a rehabilitation context was explored using a stereo camera. The camera was used to acquire depth and color information from which the 3D position of predefined joints was recovered based on: kinematic relationships, anthropometrically feasible lengths and temporal consistency. Finally, a set of quantitative measures were extracted to evaluate the performed rehabilitation exercises. Validation study using data provided by a marker based as ground-truth revealed that our proposal achieved errors within the range of state-of-the-art active markerless systems and visual evaluations done by physical therapists. The obtained results are promising and demonstrate that the developed methodology allows the analysis of human motion for a rehabilitation purpose.

2019

Paper-Based Biosensors for Analysis of Water

Authors
S. Peixoto, P; Machado, A; P. Oliveira, H; A. Bordalo, A; A. Segundo, M;

Publication
Environmental Biosensors [Working Title]

Abstract

2019

REGISTRATION OF BREAST MRI AND 3D SCAN DATA BASED ON SURFACE MATCHING

Authors
Bessa, S; Carvalho, PH; Oliveira, HP;

Publication
2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019)

Abstract
The creation of 3D complete models of the woman breast that aggregate radiological and surface information is a crucial step for the development of surgery planning tools in the context of breast cancer. This requires the registration of interior and surface data of the breast, which has to recover large breast deformations caused by the different poses of the patient during data acquisition and has to deal with the lack of landmarks between both modalities, apart from the nipple. In this paper, the registration of Magnetic Resonance Imaging exams and 3D surface data reconstructed from Kinect (TM) acquisitions is explored using a biomechanical modelling of breast pose transformations combined with a free form deformation to finely match the data. The results are promising, with an average euclidean distance between the matched data of 0.81 +/- 0.09 mm being achieved.

2019

Lightweight Deep Learning Pipeline for Detection, Segmentation and Classification of Breast Cancer Anomalies

Authors
Oliveira, HS; Teixeira, JF; Oliveira, HP;

Publication
IMAGE ANALYSIS AND PROCESSING - ICIAP 2019, PT II

Abstract
The small amount of public available medical images hinders the use of deep learning techniques for mammogram automatic diagnosis. Deep learning methods require large annotated training sets to be effective, however medical datasets are costly to obtain and suffer from large variability. In this work, a lightweight deep learning pipeline to detect, segment and classify anomalies in mammogram images is presented. First, data augmentation using the ground-truth annotation is performed and used by a cascade segmentation and classification methods. Results are obtained using the INbreast public database in the context of lesion detection and BI-RADS classification. Moreover, a pre-trained Convolutional Neural Network using ResNet50 is modified to generate the lesion regions proposals followed by a false positive reduction and contour refinement stages while a pre-trained VGG16 network is fine-tuned to classify mammograms. The detection and segmentation stage results show that the cascade configuration achieves a DICE of 0.83 without massive training while the multi-class classification exhibits an MAE of 0.58 with data augmentation.

  • 157
  • 374