Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CTM

2025

Quartic soliton solutions of a normal-dispersion-based mode-locked laser

Authors
Facao, M; Malheiro, D; Carvalho, MI;

Publication
PHYSICAL REVIEW A

Abstract
We studied the characteristics, regions of existence, and stability of different types of solitons for a distributed model of a mode-locked laser whose dispersion is purely quartic and normal. Among the different types of solitons, we identified three main branches that are named according to their different amplitude: low, medium, and high amplitude solitons. It was found that the first solitons are always unstable while the latter two exist and are stable in relatively large regions of the parameter space. Moreover, the stability regions of medium and high amplitude solitons overlap over a certain range of parameters, manifesting effects of bistability. The energy of high amplitude solitons increases quadratically with their width, whereas the energy of medium amplitude solitons may decrease or increase with the width depending on the parameter region. Furthermore, we have investigated the long term evolution of the continuous-wave solutions under modulational instability, showing that medium amplitude solitons can arise in this scenario. Additionally, we assessed the effects of second- and third-order dispersion on medium and high amplitude solitons and found that both remain stable in the presence of these terms.

2025

Dissipative solitons onset through modulational instability of the cubic complex Ginzburg-Landau equation with nonlinear gradients

Authors
Carvalho, MI; Facao, M; Descalzi, O;

Publication
CHAOS

Abstract
Modulation instability (MI) of the continuous wave (cw) has been associated with the onset of stable solitons in conservative and dissipative systems. The cubic complex Ginzburg-Landau equation (CGLE) is a prototype of a damped, driven, nonlinear, and dispersive system. The inclusion of nonlinear gradients is essential to stabilize pulses whether stationary or oscillatory. The soliton solutions of this model have been reasonably studied; however, its cw solution characteristics and stability have not been reported yet. Here, we obtain the cw solutions of the cubic CGLE with nonlinear gradient terms and study its short- and long-term evolution under the effect of small perturbations. We have found that, for each admissible amplitude, there are two branches of cw solutions, and all of them are unstable. Then, through direct integration of the evolution equation, we study the evolution of those cw solutions, observing the emergence of plain and oscillatory solitons. Depending on whether the cw and/or its perturbation are sinusoidal, we can obtain a train of a finite number of pulses or bound states.

2025

An Energy-Aware RIoT System: Analysis, Modeling and Prediction in the SUPERIOT Framework

Authors
Bocus, MJ; Hakkinen, J; Fontes, H; Drzewiecki, M; Qiu, S; Eder, K; Piechocki, RJ;

Publication
CoRR

Abstract

2025

Context-aware Rate Adaptation for Predictive Flying Networks using Contextual Bandits

Authors
Queirós, R; Kaneko, M; Fontes, H; Campos, R;

Publication
CoRR

Abstract

2025

Context-Aware Rate Adaptation for Predictable Flying Networks using Contextual Bandits

Authors
Queiros, R; Kaneko, M; Fontes, H; Campos, R;

Publication
IEEE Networking Letters

Abstract
The increasing complexity of wireless technologies, such as Wi-Fi, presents significant challenges for Rate Adaptation (RA) due to the large configuration space of transmission parameters. While extensive research has been conducted on RA for low-mobility networks, existing solutions fail to adapt in Flying Networks (FNs), where high mobility and dynamic wireless conditions introduce additional uncertainty. We propose Linear Upper Confidence Bound for RA (LinRA), a novel Contextual Bandit-based approach that leverages real-Time link context to optimize transmission rates in predictable FNs, where future trajectories are known. Simulation results demonstrate that LinRA converges 5.2× faster than benchmarks and improves throughput by 80% in Non Line-of-Sight conditions, matching the performance of ideal algorithms. © 2025 Elsevier B.V., All rights reserved.

2025

Human Activity Recognition with a Reconfigurable Intelligent Surface for Wi-Fi 6E

Authors
Paulino, N; Oliveira, M; Ribeiro, F; Outeiro, L; Pessoa, LM;

Publication
2025 JOINT EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS & 6G SUMMIT, EUCNC/6G SUMMIT

Abstract
Human Activity Recognition (HAR) is the identification and classification of static and dynamic human activities, which find applicability in domains like healthcare, entertainment, security, and cyber-physical systems. Traditional HAR approaches rely on wearable sensors, vision-based systems, or ambient sensing, each with inherent limitations such as privacy concerns or restricted sensing conditions. Instead, Radio Frequency (RF)-based HAR relies on the interaction of RF signals with people to infer activities. Reconfigurable Intelligent Surfaces (RISs) are significant for this use-case by allowing dynamic control over the wireless environment, enhancing the information extracted from RF signals. We present an Hand Gesture Recognition (HGR) approach using our own 6.5GHz RIS design, which we use to gather a dataset for HGR classification for three different hand gestures. By employing two Convolutional Neural Networks (CNNs) models trained on data gathered under random and optimized RIS configuration sequences, we achieved classification accuracies exceeding 90%.

  • 14
  • 384