2025
Authors
Klyagina O.; Silva C.G.; Silva A.S.; Guedes T.; Andrade J.R.; Bessa R.J.;
Publication
2025 IEEE Kiel Powertech Powertech 2025
Abstract
A fast response to faults in large-scale photovoltaic power plants (PVPPs), which can occur on hundreds of components like photovoltaic panels and inverters, is fundamental for maximizing energy generation and reliable system operation. This work proposes using a Graph Neural Network (GNN) combined with a digital twin for synthetic fault data scenario generation for fault location in PVPPs. It shows that GNN can adapt to system changes without requiring model retraining, thus offering a scalable solution for the real operating PVPPs, where some parts of the system may be disconnected for maintenance. The results for a real PVPP show the GNN outperforms baseline models, especially in larger topologies, achieving up to twice the accuracy in a fault location task. The GNN's adaptability to topology changes was tested on the simulated reconfigured systems. A decrease in performance was observed, and its value depends on the complexity of the original training topology. It can be mitigated by using several system reconfigurations in the training set.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.