2024
Authors
Oliveira, F; Carneiro, D; Guimaraes, M; Oliveira, O; Novais, P;
Publication
INTERNATIONAL JOURNAL OF PARALLEL EMERGENT AND DISTRIBUTED SYSTEMS
Abstract
As distributed and multi-organization Machine Learning emerges, new challenges must be solved, such as diverse and low-quality data or real-time delivery. In this paper, we use a distributed learning environment to analyze the relationship between block size, parallelism, and predictor quality. Specifically, the goal is to find the optimum block size and the best heuristic to create distributed Ensembles. We evaluated three different heuristics and five block sizes on four publicly available datasets. Results show that using fewer but better base models matches or outperforms a standard Random Forest, and that 32 MB is the best block size.
2023
Authors
Guimaraes, M; Carneiro, D; Palumbo, G; Oliveira, F; Oliveira, O; Alves, V; Novais, P;
Publication
ELECTRONICS
Abstract
Despite major advances in recent years, the field of Machine Learning continues to face research and technical challenges. Mostly, these stem from big data and streaming data, which require models to be frequently updated or re-trained, at the expense of significant computational resources. One solution is the use of distributed learning algorithms, which can learn in a distributed manner, from distributed datasets. In this paper, we describe CEDEs-a distributed learning system in which models are heterogeneous distributed Ensembles, i.e., complex models constituted by different base models, trained with different and distributed subsets of data. Specifically, we address the issue of predicting the training time of a given model, given its characteristics and the characteristics of the data. Given that the creation of an Ensemble may imply the training of hundreds of base models, information about the predicted duration of each of these individual tasks is paramount for an efficient management of the cluster's computational resources and for minimizing makespan, i.e., the time it takes to train the whole Ensemble. Results show that the proposed approach is able to predict the training time of Decision Trees with an average error of 0.103 s, and the training time of Neural Networks with an average error of 21.263 s. We also show how results depend significantly on the hyperparameters of the model and on the characteristics of the input data.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.