2014
Authors
Lindgren, P; Eriksson, J; Lindner, M; Pereira, D; Pinho, LM;
Publication
Ada User Journal
Abstract
In an embedded system, functions often operate under different requirements. In the extreme, a failing safety critical function may cause collateral damage (and hence consider to be a system failure) while non critical functions affect only the quality of service. Approaches by partitioning the system's functions into sandboxes require virtualization mechanisms by the underlying platform and thus prohibit deployment to the bulk of microcontroller based systems. In this paper we discuss an alternative approach based on static semantic analysis performed directly on the system specification expressed in the form of an object oriented (00) model in the experimental language RTFM-lang. This would allow to (at compile time) to discriminate in between critical and non-critical functions, and assign these (by means of statically checkable typing rules) appropriate access rights. In particular, one can imagine dynamic memory allocations to be allowed only in non-critical functions, while on the other hand, direct interaction with the environment may be restricted to the critical parts. With respect to scheduling, a static task and resource configuration allows e.g. Stack Resource Policy (SRP) based approaches to be deployed. In this paper we discuss how this can be achieved in a mixed critical setting.
2014
Authors
Sillero, N; Goncalves Seco, L;
Publication
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE
Abstract
The analysis of the spatial structure of animal communities requires spatial data to determine the distribution of individuals and their limiting factors. New technologies like very precise GPS as well as satellite imagery and aerial photographs of very high spatial resolution are now available. Data from airborne LiDAR (Light Detection and Ranging) sensors can provide digital models of ground and vegetation surfaces with pixel sizes of less than 1m. We present the first study in terrestrial herpetology using LiDAR data. We aim to identify the spatial patterns of a community of four species of lizards (Lacerta schreiberi, Timon lepidus, Podarcis bocagei, and P. hispanica), and to determine how the habitat is influencing the distribution of the species spatially. The study area is located in Northern Portugal. The position of each lizard was recorded during 16 surveys of 1 h with a very precise GPS (error<1 m). LiDAR data provided digital models of surface, terrain, and normalised height. From these data, we derived slope, ruggedness, orientation, and hill-shading variables. We applied spatial statistics to determine the spatial structure of the community. We computed Maxent ecological niche models to determine the importance of environmental variables. The community and its species presented a clustered distribution. We identified 14 clusters, composed of 1-3 species. Species records showed two distribution patterns, with clusters associated with steep and flat areas. Cluster outliers had the same patterns. Juveniles and subadults were associated with areas of low quality, while sexes used space in similar ways. Maxent models identified suitable habitats across the study area for two species and in the flat areas for the other two species. LiDAR allowed us to understand the local distributions of a lizard community. Remotely sensed data and LiDAR are giving new insights into the study of species ecology. Images of higher spatial resolutions are necessary to map important factors such as refuges.
2014
Authors
Sousa, PB; Bletsas, K; Tovar, E; Souto, P; Akesson, B;
Publication
REAL-TIME SYSTEMS
Abstract
Hard real- time multiprocessor scheduling has seen, in recent years, the flourishing of semi-partitioned scheduling algorithms. This category of scheduling schemes combines elements of partitioned and global scheduling for the purposes of achieving efficient utilization of the system's processing resources with strong schedulability guarantees and with low dispatching overheads. The sub-class of slot-based "task-splitting" scheduling algorithms, in particular, offers very good trade-offs between schedulability guarantees (in the form of high utilization bounds) and the number of preemptions/migrations involved. However, so far there did not exist unified scheduling theory for such algorithms; each one was formulated in its own accompanying analysis. This article changes this fragmented landscape by formulating a more unified schedulability theory covering the two state-of-the-art slot-based semi-partitioned algorithms, S-EKG and NPS-F (both fixed job-priority based). This new theory is based on exact schedulability tests, thus also overcoming many sources of pessimism in existing analysis. In turn, since schedulability testing guides the task assignment under the schemes in consideration, we also formulate an improved task assignment procedure. As the other main contribution of this article, and as a response to the fact that many unrealistic assumptions, present in the original theory, tend to undermine the theoretical potential of such scheduling schemes, we identified and modelled into the new analysis all overheads incurred by the algorithms in consideration. The outcome is a new overhead-aware schedulability analysis that permits increased efficiency and reliability. The merits of this new theory are evaluated by an extensive set of experiments.
2014
Authors
Severino, R; Pereira, N; Tovar, E;
Publication
SPRINGERPLUS
Abstract
While Cluster-Tree network topologies look promising for WSN applications with timeliness and energy-efficiency requirements, we are yet to witness its adoption in commercial and academic solutions. One of the arguments that hinder the use of these topologies concerns the lack of flexibility in adapting to changes in the network, such as in traffic flows. This paper presents a solution to enable these networks with the ability to self-adapt their clusters' duty-cycle and scheduling, to provide increased quality of service to multiple traffic flows. Importantly, our approach enables a network to change its cluster scheduling without requiring long inaccessibility times or the re-association of the nodes. We show how to apply our methodology to the case of IEEE 802.15.4/ZigBee cluster-tree WSNs without significant changes to the protocol. Finally, we analyze and demonstrate the validity of our methodology through a comprehensive simulation and experimental validation using commercially available technology on a Structural Health Monitoring application scenario.
2014
Authors
Malta, MC; Baptista, AA; Parente, C;
Publication
Journal of Electronic Commerce in Organizations
Abstract
This paper presents the state of the art on interoperability developments for the social and solidarity economy (SSE) community web based information systems (WIS); it also presents a framework of interoperability for the SSE' WIS and the developments made in a research-in-progress PhD project in the last 3 years. A search on the bibliographic databases showed that so far there are no papers on interoperability initiatives on the SSE, so it was necessary to have other sources of information: a preliminary analysis of the WIS that support SSE activities; and interviews with the representatives of some of the world's most important SSE organisations. The study showed that the WIS are still not interoperable yet. In order to become interoperable a group of the SSE community has been developing a Dublin Corre Application Profile to be used by the SSE community as reference and binding to describe their resources. This paper also describes this on-going process. Copyright © 2014, IGI Global.
2014
Authors
Malta, MC; Baptista, AA;
Publication
International Journal of Metadata, Semantics and Ontologies
Abstract
This paper describes a study developed with the goal to understand the panorama of the metadata Application Profiles (AP): (i) what AP have been developed so far; (ii) what type of institutions have developed these AP; (iii) what are the application domains of these AP; (iv) what are the Metadata Schemes (MS) used by these AP; (v) what application domains have been producing MS; (vi) what are the Syntax Encoding Schemes (SES) and the Vocabulary Encoding Schemes (VES) used by these AP; and finally (vii) if these AP have followed the Singapore Framework (SF). We found (i) 74 AP; (ii) the AP are mostly developed by the scientific community, (iii) the 'Learning Objects' domain is the most intensive producer; (iv) Dublin Core metadata vocabularies are the most used and are being used in all domains of application and IEEE LOM is the second most used but only inside the 'Learning Objects' application domain; (v) the most intensive producer of MS is the domain of 'Libraries and Repositories'; (vi) 13 distinct SES and 90 distinct VES were used; (vi) five of the 74 AP found follow the SF. Copyright © 2014 Inderscience Enterprises Ltd.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.