2025
Authors
Aliabadi, DE; Pinto, T;
Publication
ENERGIES
Abstract
[No abstract available]
2025
Authors
Silva, C; Pereira, VS; Baptista, J; Pinto, T;
Publication
ENERGIES
Abstract
2025
Authors
Baptista, J; Pinto, T;
Publication
ELECTRONICS
Abstract
[No abstract available]
2025
Authors
Zamani, M; Prieta Pintado, Fdl; Pinto, T;
Publication
Comput. Electr. Eng.
Abstract
[No abstract available]
2025
Authors
Mejia, MA; Macedo, LH; Pinto, T; Franco, JF;
Publication
APPLIED ENERGY
Abstract
Electric vehicles (EVs) allow a significant reduction in harmful gas emissions, thus improving urban air quality. However, the widespread adoption of this technology is limited by several factors, resulting in heterogeneous deployment in urban areas. This raises challenges regarding the planning of public electric vehicle charging infrastructure (EVCI), requiring adaptive strategies to ensure comprehensive and efficient coverage. This study introduces an innovative method that leverages geographic information systems to pinpoint appropriate sizes and suitable locations for public EVCI within urban environments. Initially, a Bass diffusion model is employed to estimate EV adoption rates by regions, enabling the determination of the appropriate sizes of EVCI necessary for each of them. Subsequently, a multi-criteria decision-making approach is applied to identify the suitable locations for EV charger installation within each region. In this way, EVCI locations are selected using spatial criteria, which ensure they are near common areas of interest and easily accessible through the road network. To validate the effectiveness and applicability of the proposed method, tests using geospatial data from a city in Brazil were carried out. The findings suggest that EVCI planning without proper spatial analysis may result in inefficient locations and inadequate sizes, which may discourage potential EV adopters and hinder widespread adoption of this technology.
2025
Authors
Teixeira, B; Carvalhais, L; Pinto, T; Vale, Z;
Publication
ENERGY AND BUILDINGS
Abstract
The increasing integration of Artificial Intelligence (AI) into Building Energy Management Systems (BEMS) is revolutionizing energy optimization by enabling real-time monitoring, predictive analytics, and automated control. While these advancements improve energy efficiency and sustainability, the opacity of AI models poses challenges in interpretability, limiting user trust and hindering widespread adoption in operational decisionmaking. Ensuring transparency is crucial for aligning AI insights with building performance requirements and regulatory expectations. This paper presents EI-Build, a novel Explainable Artificial Intelligence (XAI) framework designed to enhance the interpretability of intelligent automated BEMS. EI-Build integrates multiple XAI techniques, including Shapley Additive Explanations (SHAP), Local Interpretable Model-Agnostic Explanations (LIME), Anchors, Partial Dependence Plots, Feature Permutation Importance, and correlation-based statistical analysis, to provide comprehensive explanations of model behavior. By dynamically tailoring the format and depth of explanations, EI-Build ensures that insights remain accessible and actionable for different user profiles, from general occupants to energy specialists and machine learning experts. A case study on photovoltaic power generation forecasting applied to a real BEMS context evaluates EI-Build's capacity to deliver to deliver both global and local explanations, validate feature dependencies, and facilitate cross-comparison of interpretability techniques. The results highlight how EI-Build enhances user trust, facilitates informed decision-making, and improves model validation. By consolidating diverse XAI methods into a single automated framework, EI-Build represents a significant advancement in bridging the gap between complex AI energy models and real-world applications.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.