2019
Authors
Pinto, T; Faia, R; Navarro Caceres, M; Santos, G; Corchado, JM; Vale, Z;
Publication
IEEE SYSTEMS JOURNAL
Abstract
This paper proposes a novel case-based reasoning (CBR) recommender system for intelligent energy management in buildings. The proposed approach recommends the amount of energy reduction that should be applied in a building in each moment, by learning from previous similar cases. The k-nearest neighbor clustering algorithm is applied to identify the most similar past cases, and an approach based on support vector machines is used to optimize the weight of different parameters that characterize each case. An expert system composed by a set of ad hoc rules guarantees that the solution is adequate and applicable to the new case scenario. The proposed CBR methodology is modeled through a dedicated software agent, thus enabling its integration in a multi-agent systems society for the study of energy systems. Results show that the proposed approach is able to provide suitable recommendations on energy reduction, by comparing its results with a previous approach based on particle swarm optimization and with the real reduction in past cases. The applicability of the proposed approach in real scenarios is also assessed through the application of the results provided by the proposed approach on a house energy resources management system.
2019
Authors
Lezama, F; Soares, J; Hernandez Leal, P; Kaisers, M; Pinto, T; Vale, Z;
Publication
IEEE TRANSACTIONS ON POWER SYSTEMS
Abstract
Triggered by the increased fluctuations of renewable energy sources, the European Commission stated the need for integrated short-term energy markets (e.g., intraday), and recognized the facilitating role that local energy communities could play. In particular, microgrids and energy communities are expected to play a crucial part in guaranteeing the balance between generation and consumption on a local level. Local energy markets empower small players and provide a stepping stone toward fully transactive energy systems. In this paper, we evaluate such a fully integrated transactive system by, first, modeling the energy resource management problem of a microgrid under uncertainty considering flexible loads and market participation (solved via two-stage stochastic programming), second, modeling a wholesale market and a local market, and, third, coupling these elements into an integrated transactive energy simulation. Results under a realistic case study (varying prices and competitiveness of local markets) show the effectiveness of the transactive system resulting in a reduction of up to 75% of the expected costs when local markets and flexibility are considered. This illustrates that how local markets can facilitate the trade of energy, thereby increasing the tolerable penetration of renewable resources and facilitating the energy transition.
2019
Authors
Gonzalez Briones, A; Hernandez, G; Pinto, T; Vale, Z; Corchado, JM;
Publication
International Conference on the European Energy Market, EEM
Abstract
The ability to predict future energy consumption is very important for energy distribution companies because it allows them to estimate energy needs and supply them accordingly. Consumption prediction makes it possible for those companies to optimize their processes by, for example, providing them with knowledge about future periods of high energy demand or by enabling them to adapt their tariffs to customer consumption. Machine Learning techniques allow to predict future energy consumption on the basis of the customers' historical consumption and several other parameters. This article reviews some of the main machine learning models capable of predicting energy consumption, in our case study we use a specific set of data extracted from a two-year-period of a shoe store. Among the evaluated methods, Gradient Boosting has obtained an 86.3% success rate in predicting consumption. © 2019 IEEE.
2019
Authors
Faia, R; Pinto, T; Vale, Z; Corchado, JM;
Publication
International Conference on the European Energy Market, EEM
Abstract
The necessity of end-user engagement in power systems have become a reality in recent times. One of the solutions to this engagement is the creation of local energy markets. The distribution systems operators are compelled to investigate and optimize their asset investment cost in reinforcement of grids by introducing smart grid functionalities in order to avoid investments. The congestion management is the one of the most promising strategies to deal with the network issues. This paper presents a local electricity market or flexibility negotiation as a strategy in order to help the distribution system operator in congestion management. The local market is performed considering an asymmetric action model and is coordinated by an aggregator. A case study is presented considering a simulation that uses a low voltage network with 17 buses, which includes 9 consumers and 3 prosumers, all domestic users. Results show that using the proposed market model, the network congestion is avoided by taking advantage from the trading of consumers flexibility. © 2019 IEEE.
2019
Authors
Pinto, T; Vale, Z;
Publication
International Conference on the European Energy Market, EEM
Abstract
The evolution of electricity markets towards local energy trading models, including peer-To-peer transactions, is bringing by multiple challenges for the involved players. In particular, small consumers, prosumers and generators, with no experience on participating in competitive energy markets, are not prepared for facing such an environment. This paper addresses this problem by proposing a decision support solution for small players negotiations in local transactions. The collaborative reinforcement learning concept is applied to combine different learning processes and reached an enhanced final decision for players actions in bilateral negotiations. The reinforcement learning process is based on the application of the Q-Learning algorithm; and the continuous combination of the different learning results applies and compares several collaborative learning algorithms, namely BEST-Q, Average (AVE)-Q; Particle Swarm Optimization (PSO)-Q, and Weighted Strategy Sharing (WSS)-Q and uses a model to aggregate these results. Results show that the collaborative learning process enables players' to correctly identify the negotiation strategy to apply in each moment, context and against each opponent. © 2019 IEEE.
2019
Authors
Pinto, T; Vale, Z;
Publication
PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE
Abstract
This paper presents the Adaptive Decision Support for Electricity Markets Negotiations (AiD-EM) system. AiD-EM is a multi-agent system that provides decision support to market players by incorporating multiple sub-(agent-based) systems, directed to the decision support of specific problems. These sub-systems make use of different artificial intelligence methodologies, such as machine learning and evolutionary computing, to enable players adaptation in the planning phase and in actual negotiations in auction-based markets and bilateral negotiations. AiD-EM demonstration is enabled by its connection to MASCEM (Multi-Agent Simulator of Competitive Electricity Markets).
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.