2021
Authors
Santos, G; Pinto, T; Vale, Z; Carvalho, R; Teixeira, B; Ramos, C;
Publication
ENERGIES
Abstract
Building management systems (BMSs) are being implemented broadly by industries in recent decades. However, BMSs focus on specific domains, and when installed on the same building, they lack interoperability to work on a centralized user interface. On the other hand, BMSs interoperability allows the implementation of complex rules based on multi-domain contexts. The Building's Reasoning for Intelligent Control Knowledge-based System (BRICKS) is a context-aware semantic rule-based system for the intelligent management of buildings' energy and security. It uses ontologies and semantic web technologies to interact with different domains, taking advantage of cross-domain knowledge to apply context-based rules. This work upgrades the previously presented version of BRICKS by including services for energy consumption and generation forecast, demand response, a configuration user interface (UI), and a dynamic building monitoring and management UI. The case study demonstrates BRICKS deployed at different aggregation levels in the authors' laboratory building, managing a demand response event and interacting autonomously with other BRICKS instances. The results validate the correct functioning of the proposed tool, which contributes to the flexibility, efficiency, and security of building energy systems.
2021
Authors
Faia, R; Pinto, T; Vale, Z; Corchado, JM;
Publication
ENERGIES
Abstract
The participation of household prosumers in wholesale electricity markets is very limited, considering the minimum participation limit imposed by most market participation rules. The generation capacity of households has been increasing since the installation of distributed generation from renewable sources in their facilities brings advantages for themselves and the system. Due to the growth of self-consumption, network operators have been putting aside the purchase of electricity from households, and there has been a reduction in the price of these transactions. This paper proposes an innovative model that uses the aggregation of households to reach the minimum limits of electricity volume needed to participate in the wholesale market. In this way, the Aggregator represents the community of households in market sales and purchases. An electricity transactions portfolio optimization model is proposed to enable the Aggregator reaching the decisions on which markets to participate to maximize the market negotiation outcomes, considering the day-ahead market, intra-day market, and retail market. A case study is presented, considering the Iberian wholesale electricity market and the Portuguese retail market. A community of 50 prosumers equipped with photovoltaic generators and individual storage systems is used to carry out the experiments. A cost reduction of 6-11% is achieved when the community of households buys and sells electricity in the wholesale market through the Aggregator.
2021
Authors
Vale, Z; Faria, P; Abrishambaf, O; Gomes, L; Pinto, T;
Publication
ENERGIES
Abstract
This paper presents MARTINE (Multi-Agent based Real-Time INfrastruture for Energy), a simulation, emulation and energy management platform for the study of problems related to buildings and smart grids. Relevant advances related to buildings and smart grid management and operation have been proposed, focusing either on software models for decision support or on physical infrastructure and control approaches. These two perspectives are, however, complementary, and no practical assessment can be achieved without a suitable interaction and analysis of the impact that decision-making models have on physical resources, and vice-versa. MARTINE overcomes this limitation by integrating, in a single platform: real buildings with the associated devices and resources; emulated components that complement the ones present in the buildings; simulated resources, players and buildings using multi-agent systems, real-time simulation with hardware in the loop capabilities, which enables integrating virtual and physical components; and a knowledge layer that incorporates all the required decision support and energy management models. MARTINE thus provides a comprehensive platform for the study and management of energy resources. The advantages of this platform are demonstrated in this paper through three use cases, related to agriculture irrigation, practical implementation of demand response and load modeling using various network configurations.
2021
Authors
Andrade, R; Wannous, S; Pinto, T; Praca, I;
Publication
ELECTRONICS
Abstract
This paper explores the concept of the local energy markets and, in particular, the need for trust and security in the negotiations necessary for this type of market. A multi-agent system is implemented to simulate the local energy market, and a trust model is proposed to evaluate the proposals sent by the participants, based on forecasting mechanisms that try to predict their expected behavior. A cyber-attack detection model is also implemented using several supervised classification techniques. Two case studies were carried out, one to evaluate the performance of the various classification methods using the IoT-23 cyber-attack dataset; and another one to evaluate the performance of the developed trust mode.
2021
Authors
Santos, G; Pinto, T; Vale, Z;
Publication
ELECTRONICS
Abstract
This paper presents the AiD-EM Ontology, which provides a semantic representation of the concepts required to enable the interoperability between multi-agent-based decision support systems, namely AiD-EM, and the market agents that participate in electricity market simulations. Electricity markets' constant changes, brought about by the increasing necessity for adequate integration of renewable energy sources, make them complex and dynamic environments with very particular characteristics. Several modeling tools directed at the study and decision support in the scope of the restructured wholesale electricity markets have emerged. However, a common limitation is identified: the lack of interoperability between the various systems. This gap makes it impossible to exchange information and knowledge between them, test different market models, enable players from heterogeneous systems to interact in common market environments, and take full advantage of decision support tools. To overcome this gap, this paper presents the AiD-EM Ontology, which includes the necessary concepts related to the AiD-EM multi-agent decision support system, to enable interoperability with easier cooperation and adequate communication between AiD-EM and simulated market agents wishing to take advantage of this decision support tool.
2021
Authors
Pinto, T; Wooldridge, M; Vale, Z;
Publication
IEEE ACCESS
Abstract
This paper explores the aggregation of electricity consumers flexibility. A novel coalitional game theory model for partition function games with non-transferable utility is proposed. This model is used to formalize a game in which electricity consumers find coalitions among themselves in order to trade their consumption flexibility in the electricity market. Utility functions are defined to enable measuring the players preferences. Two case studies are presented, including a simple illustrative case, which assesses and explains the model in detail; and a large-scale scenario based on real data, comprising more than 20,000 consumers. Results show that the proposed model is able to reach solutions that are more suitable for the consumers when compared to the solutions achieved by traditional aggregation techniques in power and energy systems, such as clustering-based methodologies. The solutions found by the proposed model consider the perspectives from all players involved in the game and thus are able to reflect the rational behaviour of the involved players, rather than imposing an aggregation solution that is only beneficial from the perspective of the aggregator.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.