Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by HumanISE

2022

Automatic Configuration of Genetic Algorithm for the Optimization of Electricity Market Participation Using Sequential Model Algorithm Configuration

Authors
Oliveira, V; Pinto, T; Faia, R; Veiga, B; Soares, J; Romero, R; Vale, Z;

Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2022

Abstract
Complex optimization problems are often associated to large search spaces and consequent prohibitive execution times in finding the optimal results. This is especially relevant when dealing with dynamic real problems, such as those in the field of power and energy systems. Solving this type of problems requires new models that are able to find near-optimal solutions in acceptable times, such as metaheuristic optimization algorithms. The performance of these algorithms is, however, hugely dependent on their correct tuning, including their configuration and parametrization. This is an arduous task, usually done through exhaustive experimentation. This paper contributes to overcome this challenge by proposing the application of sequential model algorithm configuration using Bayesian optimization with Gaussian process and Monte Carlo Markov Chain for the automatic configuration of a genetic algorithm. Results from the application of this model to an electricity market participation optimization problem show that the genetic algorithm automatic configuration enables identifying the ideal tuning of the model, reaching better results when compared to a manual configuration, in similar execution times.

2022

A full-year data regarding a smart building

Authors
Gomes, L; Pinto, T; Vale, Z;

Publication

Abstract

2022

Exploring Timing Covert Channel Performance over the IEEE 802.15.4

Authors
Severino, R; Rodrigues, J; Ferreira, LL;

Publication
2022 IEEE 27TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA)

Abstract
As IoT technologies mature, they are increasingly finding their way into more sensitive domains, such as Medical and Industrial IoT, in which safety and cyber-security are paramount. While the number of deployed IoT devices continues to increase annually, they still present severe cyber-security vulnerabilities, turning them into potential targets and entry points to support further attacks. Naturally, as these nodes are compromised, attackers aim at setting up stealthy communication behaviours, to exfiltrate data or to orchestrate nodes of a botnet in a cloaked fashion. Network covert channels are increasingly being used with such malicious intents. The IEEE 802.15.4 is one of the most pervasive protocols in IoT, and a fundamental part of many communication infrastructures. Despite this fact, the possibility of setting up such covert communication techniques on this medium has received very little attention. We aim at analysing the performance and feasibility of such covert-channel implementations upon the IEEE 802.15.4 protocol. This will enable a better understanding of the involved risk and help supporting the development of further cyber-security mechanisms to mitigate this threat.

2022

Flexible Loads Scheduling Algorithms for Renewable Energy Communities

Authors
Fonseca, T; Ferreira, LL; Landeck, J; Klein, L; Sousa, P; Ahmed, F;

Publication
ENERGIES

Abstract
Renewable Energy Communities (RECs) are emerging as an effective concept and model to empower the active participation of citizens in the energy transition, not only as energy consumers but also as promoters of environmentally friendly energy generation solutions, particularly through the use of photovoltaic panels. This paper aims to contribute to the management and optimization of individual and community Distributed Energy Resources (DER). The solution follows a price and source-based REC management program, in which consumers' day-ahead flexible loads (Flex Offers) are shifted according to electricity generation availability, prices, and personal preferences, to balance the grid and incentivize user participation. The heuristic approach used in the proposed algorithms allows for the optimization of energy resources in a distributed edge-and-fog approach with a low computational overhead. The simulations performed using real-world energy consumption and flexibility data of a REC with 50 dwellings show an average cost reduction, taking into consideration all the seasons of the year, of 6.5%, with a peak of 12.2% reduction in the summer, and an average increase of 32.6% in individual self-consumption. In addition, the case study demonstrates promising results regarding grid load balancing and the introduction of intra-community energy trading.

2022

Configuration of Parallel Real-Time Applications on Multi-Core Processors

Authors
Gharajeh, MS; Carvalho, T; Pinho, LM;

Publication
2022 IEEE 20TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN)

Abstract
Parallel programming models (e.g., OpenMP) are more and more used to improve the performance of real-time applications in modern processors. Nevertheless, these processors have complex architectures, being very difficult to understand their timing behavior. The main challenge with most of existing works is that they apply static timing analysis for simpler models or measurement-based analysis using traditional platforms (e.g., single core) or considering only sequential algorithms. How to provide an efficient configuration for the allocation of the parallel program in the computing units of the processor is still an open challenge. This paper studies the problem of performing timing analysis on complex multi-core platforms, pointing out a methodology to understand the applications' timing behavior, and guide the configuration of the platform. As an example, the paper uses an OpenMP-based program of the Heat benchmark on a NVIDIA Jetson AGX Xavier. The main objectives are to analyze the execution time of OpenMP tasks, specify the best configuration of OpenMP directives, identify critical tasks, and discuss the predictability of the system/application. A Linux perf based measurement tool, which has been extended by our team, is applied to measure each task across multiple executions in terms of total CPU cycles, the number of cache accesses, and the number of cache misses at different cache levels, including L1, L2 and L3. The evaluation process is performed using the measurement of the performance metrics by our tool to study the predictability of the system/application.

2022

Heuristic-based Task-to-Thread Mapping in Multi-Core Processors

Authors
Gharajeh, MS; Royuela, S; Pinho, LM; Carvalho, T; Quinones, E;

Publication
2022 IEEE 27TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA)

Abstract
OpenMP can be used in real-time applications to enhance system performance. However, predictability of OpenMP applications is still a challenge. This paper investigates heuristics for the mapping of OpenMP task graphs in underlying threads, for the development of time-predictable OpenMP programs. These approaches are based on a global scheduling queue, as well as per-thread allocation queues. The proposed method is divided into scheduling and allocation phases. In the former phase, OpenMP task-parts are discovered from OpenMP graph and placed in the scheduling queue. Afterwards, an appropriate allocation queue is selected for each task-part using four heuristic algorithms. In the latter phase, the best task-part is selected from the allocation queue to be allocated to and executed by an idle thread. Preliminary simulation results show that the new method overcomes BFS and WFS in terms of scheduling time and idle time.

  • 145
  • 663