Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by HumanISE

2025

Quality Inspection in Casting Aluminum Parts: A Machine Vision System for Filings Detection and Hole Inspection

Authors
Nascimento, R; Ferreira, T; Rocha, CD; Filipe, V; Silva, MF; Veiga, G; Rocha, LF;

Publication
J. Intell. Robotic Syst.

Abstract
Quality inspection inspection systems are critical for maintaining product integrity. Being a repetitive task, when performed by operators only, it can be slow and error-prone. This paper introduces an automated inspection system for quality assessment in casting aluminum parts resorting to a robotic system. The method comprises two processes: filing detection and hole inspection. For filing detection, five deep learning modes were trained. These models include an object detector and four instance segmentation models: YOLOv8, YOLOv8n-seg, YOLOv8s-seg, YOLOv8m-seg, and Mask R-CNN, respectively. Among these, YOLOv8s-seg exhibited the best overall performance, achieving a recall rate of 98.10%, critical for minimizing false negatives and yielding the best overall results. Alongside, the system inspects holes, utilizing image processing techniques like template-matching and blob detection, achieving a 97.30% accuracy and a 2.67% Percentage of Wrong Classifications. The system improves inspection precision and efficiency while supporting sustainability and ergonomic standards, reducing material waste and reducing operator fatigue. © The Author(s) 2025.

2025

Unlocking the Potential of Large Language Models for AI-Assisted Medical Education: A Case Study with ChatGPT

Authors
Sharma, P; Thapa, K; Dhakal, P; Upadhaya, MD; Thapa, D; Adhikari, S; Khanal, SR; Filipe, V;

Publication
Communications in Computer and Information Science

Abstract
Artificial intelligence is gaining attraction in more ways than ever before. The popularity of language models and AI-based businesses has soared since ChatGPT was made available to the public via the OpenAI web platform. It gains popularity in a very short period because of its real-world problem-solving capability. Considering the widespread use of ChatGPT and the people relying on it, this study determined how reliable ChatGPT can be used for learning in the medical domain. The capability of ChatGPT was evaluated using the questions of Harvard University gross anatomy and the United States Medical Licensing Examination (USMLE). The outcome of the ChatGPT was analyzed using a 2-way ANOVA and post-hoc analysis. Both tests showed systematic covariation between format and prompt. Furthermore, the physician adjudicators independently rated the outcome’s accuracy, concordance, and insight into the answers given by ChatGPT. As a result of the analysis, ChatGPT-generated answers were more context-oriented and represented a better model for deductive reasoning than regular Google search results. Furthermore, ChatGPT obtained 58.8% on logical questions and 60% on ethical questions. This means that the ChatGPT is approaching the passing range for logical questions and has crossed the threshold for ethical questions. These results indicate that ChatGPT and other language-learning models can be invaluable tools for e-learners. © 2025 Elsevier B.V., All rights reserved.

2025

Serious Game Design for Green Mobility: A Lean Inception Approach

Authors
Brito, Walkir, WAT,AT; null; null; Silva, João Sousa, JSE,E; Nunes, Ricardo Rodrigues, RR,; Filipe, Manuel De Jesus, VMDJ,V;

Publication
Communications in Computer and Information Science

Abstract
This study explores the application of the Lean Inception methodology in developing “EcoRider: Green Adventure,” an educational game aimed at enhancing motorcycle safety and promoting environmental awareness. Funded by the A-MoVeR project under the European Recovery and Resilience Facility, the game educates players on advanced safety technologies such as radars, cameras, LiDAR, and artificial intelligence (AI) algorithms. Players navigate complex urban scenarios, learning to manage potential hazards and promoting ecofriendly urban mobility. Using a qualitative case study approach, the research evaluates the effectiveness of integrating these technologies into the game’s design and gameplay. The game features multiple levels with increasing difficulty, requiring players to strategically place sensors and use AI models to overcome challenges. The application of the Lean Inception methodology has been essential in aligning the development team’s efforts, ensuring a cohesive approach to delivering a minimum viable product that satisfies both educational and technological objectives. Future work will be on refining the game, expanding its scope and exploring additional applications in the wider context of sustainable and safe mobility. © 2025 Elsevier B.V., All rights reserved.

2025

A Computer-Aided Approach to Canine Hip Dysplasia Assessment: Measuring Femoral Head-Acetabulum Distance with Deep Learning

Authors
Franco-Gonçalo, P; Leite, P; Alves-Pimenta, S; Colaço, B; Gonçalves, L; Filipe, V; McEvoy, F; Ferreira, M; Ginja, M;

Publication
APPLIED SCIENCES-BASEL

Abstract
Canine hip dysplasia (CHD) screening relies on radiographic assessment, but traditional scoring methods often lack consistency due to inter-rater variability. This study presents an AI-driven system for automated measurement of the femoral head center to dorsal acetabular edge (FHC/DAE) distance, a key metric in CHD evaluation. Unlike most AI models that directly classify CHD severity using convolutional neural networks, this system provides an interpretable, measurement-based output to support a more transparent evaluation. The system combines a keypoint regression model for femoral head center localization with a U-Net-based segmentation model for acetabular edge delineation. It was trained on 7967 images for hip joint detection, 571 for keypoints, and 624 for acetabulum segmentation, all from ventrodorsal hip-extended radiographs. On a test set of 70 images, the keypoint model achieved high precision (Euclidean Distance = 0.055 mm; Mean Absolute Error = 0.0034 mm; Mean Squared Error = 2.52 x 10-5 mm2), while the segmentation model showed strong performance (Dice Score = 0.96; Intersection over Union = 0.92). Comparison with expert annotations demonstrated strong agreement (Intraclass Correlation Coefficients = 0.97 and 0.93; Weighted Kappa = 0.86 and 0.79; Standard Error of Measurement = 0.92 to 1.34 mm). By automating anatomical landmark detection, the system enhances standardization, reproducibility, and interpretability in CHD radiographic assessment. Its strong alignment with expert evaluations supports its integration into CHD screening workflows for more objective and efficient diagnosis and CHD scoring.

2025

Machine Learning for Decision Support and Automation in Games: A Study on Vehicle Optimal Path

Authors
Penelas, G; Barbosa, L; Reis, A; Barroso, J; Pinto, T;

Publication
ALGORITHMS

Abstract
In the field of gaming artificial intelligence, selecting the appropriate machine learning approach is essential for improving decision-making and automation. This paper examines the effectiveness of deep reinforcement learning (DRL) within interactive gaming environments, focusing on complex decision-making tasks. Utilizing the Unity engine, we conducted experiments to evaluate DRL methodologies in simulating realistic and adaptive agent behavior. A vehicle driving game is implemented, in which the goal is to reach a certain target within a small number of steps, while respecting the boundaries of the roads. Our study compares Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC) in terms of learning efficiency, decision-making accuracy, and adaptability. The results demonstrate that PPO successfully learns to reach the target, achieving higher and more stable cumulative rewards. Conversely, SAC struggles to reach the target, displaying significant variability and lower performance. These findings highlight the effectiveness of PPO in this context and indicate the need for further development, adaptation, and tuning of SAC. This research contributes to developing innovative approaches in how ML can improve how player agents adapt and react to their environments, thereby enhancing realism and dynamics in gaming experiences. Additionally, this work emphasizes the utility of using games to evolve such models, preparing them for real-world applications, namely in the field of vehicles' autonomous driving and optimal route calculation.

2025

High-resolution portable bluetooth module for ECG and EMG acquisition

Authors
Luiz, LE; Soares, S; Valente, A; Barroso, J; Leitao, P; Teixeira, JP;

Publication
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL

Abstract
Problem: Portable ECG/sEMG acquisition systems for telemedicine often lack application flexibility (e.g., limited configurability, signal validation) and efficient wireless data handling. Methodology: A modular biosignal acquisition system with up to 8 channels, 24-bit resolution and configurable sampling (1-4 kHz) is proposed, featuring per-channel gain/source adjustments, internal MUX-based reference drive, and visual electrode integrity monitoring; Bluetooth (R) transmits data via a bit-wise packet structure (83.92% smaller than JSON, 7.28 times faster decoding with linear complexity based on input size). Results: maximum 6.7 mu V-rms input-referred noise; harmonic signal correlations >99.99%, worst-case THD of -53.03 dBc, and pulse wave correlation >99.68% in frequency-domain with maximum NMSE% of 6e-6%; and 22.3-hour operation (3.3 Ah battery @ 150 mA). Conclusion: The system enables high-fidelity, power-efficient acquisition with validated signal integrity and adaptable multi-channel acquisition, addressing gaps in portable biosensing.

  • 12
  • 683