Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CAP

2015

Quantification of Chemical Characteristics of Olive Fruit and Oil of cv Cobran double dagger osa in Two Ripening Stages Using MIR Spectroscopy and Chemometrics

Authors
Machado, M; Machado, N; Gouvinhas, I; Cunha, M; de Almeida, JMMM; Barros, AIRNA;

Publication
FOOD ANALYTICAL METHODS

Abstract
The phenolic compound concentration of olives and olive oil is typically quantified using HPLC; however, this process is expensive and time consuming. The purpose of this work was to evaluate the potential of Fourier transform infrared (FTIR) spectroscopy combined with chemometrics, as a rapid tool for the quantitative prediction of phenol content and antioxidant activity in olive fruits and oils from "Cobran double dagger osa" cultivar. Normalized spectral data using standard normal variate (SNV) and first and second Savitzky-Golay derivatives were used to build calibration models based on principal component regression (PCR) and on partial least squares regression (PLS-R), the performance of both models have been also compared. It was shown the possibility of establishing optimized regression models using the combined frequency regions of 3050-2750 and 1800-790 cm(-1) instead of the full mid-infrared spectrum was shown. It was concluded that, in general, the first derivative of data and PLS-R models offered enhanced results. Low root-mean-square error (RMSE) and high correlation coefficients (R (2)) for the calibration and for the validation sets were obtained.

2015

Discrimination and characterisation of extra virgin olive oils from three cultivars in different maturation stages using Fourier transform infrared spectroscopy in tandem with chemometrics

Authors
Gouvinhas, I; de Almeida, JMMM; Carvalho, T; Machado, N; Barros, AIRNA;

Publication
FOOD CHEMISTRY

Abstract
A methodology based on Fourier transform infrared (FTIR) spectroscopy, combined with multivariate analysis methods, was applied in order to monitor extra virgin olive oils produced from three distinct cultivars on different maturation stages. For the first time, this kind of methodology is used for the simultaneous discrimination of the maturation stage, and different cultivars. Principal component analysis and discriminant analysis were utilised to create a model for the discrimination of olive oil samples. Partial least squares regression was employed to design calibration models for the determination of chemical parameters. The performance of these models was based on the multiple coefficient of determination (R-2), the root mean square error of calibration (RMSEC) and root mean square error of cross validation (RMSECV). The prediction models for the chemical parameters resulted in a R-2 ranged from 0.93 to 0.99, a RMSEC ranged from 1% to 4% and a RMSECV from 2% to 5%. It has been shown that this kind of approach allows to distinguish the different cultivars, and to clearly discern the different maturation stages, in each one of these distinct cultivars. Furthermore, the results demonstrated that FTIR spectroscopy in tandem with chemometric techniques allows the creation of viable and accurate models, suitable for correlating the data collected by FTIR spectroscopy, with the chemical composition of the EVOOs, obtained by standard methods.

2015

Short wavelength Raman spectroscopy applied to the discrimination and characterization of three cultivars of extra virgin olive oils in different maturation stages

Authors
Gouvinhas, I; Machado, N; Carvalho, T; de Almeida, JMMM; Barros, AIRNA;

Publication
TALANTA

Abstract
Extra virgin olive oils produced from three cultivars on different maturation stages were characterized using Raman spectroscopy. Chemometric methods (principal component analysis, discriminant analysis, principal component regression and partial least squares regression) applied to Raman spectral data were utilized to evaluate and quantify the statistical differences between cultivars and their ripening process. The models for predicting the peroxide value and free acidity of olive oils showed good calibration and prediction values and presented high coefficients of determination ( > 0.933). Both the R-2, and the correlation equations between the measured chemical parameters, and the values predicted by each approach are presented; these comprehend both PCR and PLS, used to assess SNV normalized Raman data, as well as first and second derivative of the spectra. This study demonstrates that a combination of Raman spectroscopy with multivariate analysis methods can be useful to predict rapidly olive oil chemical characteristics during the maturation process.

2015

Automatized and desktop AC-susceptometer for the in situ and real time monitoring of magnetic nanoparticles' synthesis by coprecipitation

Authors
Fernandez Garcia, MP; Teixeira, JM; Machado, P; Oliveira, MRFF; Maia, JM; Pereira, C; Pereira, AM; Freire, C; Araujo, JP;

Publication
REVIEW OF SCIENTIFIC INSTRUMENTS

Abstract
The main purpose of this work was to design, develop, and construct a simple desktop AC susceptometer to monitor in situ and in real time the coprecipitation synthesis of magnetic nanoparticles. The design incorporates one pair of identical pick-up sensing coils and one pair of Helmholtz coils. The picked up signal is detected by a lock-in SR850 amplifier that measures the in-and out-of-phase signals. The apparatus also includes a stirrer with 45 degrees-angle blades to promote the fast homogenization of the reaction mixture. Our susceptometer has been successfully used to monitor the coprecipitation reaction for the synthesis of iron oxide nanoparticles. (C) 2015 AIP Publishing LLC.

2015

Electrosynthesis of heterocyclic compounds by radical cyclization in environmentally friendly media

Authors
Mendes, JP; Esperanca, JMSS; Esteves, AP; Silva, MM; Medeiros, MJ;

Publication
ECS Transactions

Abstract
We investigated the reductive intramolecular cyclization of bromopropargyl ethers derivatives, catalyzed by electrogenerated (1,4,8,11-tetramethyl-1,4,8,11-tetraaza-cyclotetradecane)nickel(I), [Ni(tmc)]+ as the catalysts in N,N,N-trimethyl-N-(2- hydroxyethyl)ammonium bis(trifluoromethylsulfonyl)imide,[N1112(OH)][NTf2] and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C2mim][NTf2] by cyclic voltammetry and controlled-potential electrolysis. The results show that the reaction leads to the formation of the expected cyclic compounds, which are important intermediates in the synthesis of natural products with possible biological activities. © The Electrochemical Society.

2015

Radioisotope-based XRF instrumentation for determination of lead in paint: An assessment of the current accuracy and reliability of portable analyzers used in New York State

Authors
Guimarães, D; Cleaver, TM; Martin, SF; Parsons, PJ;

Publication
Analytical Methods

Abstract
Childhood lead poisoning remains a significant public health issue, especially in the United States, where the most common source of exposure is lead-based paint (LBP). X-Ray Fluorescence (XRF) analysis is still the most widely used method for detecting LBP in the field. Although portable XRF instrumentation based on excitation from a 57Co radioisotope has been used for more than 30 years, there have been few reports documenting its performance. Here we describe a study that was conducted by the New York State Department of Health's Wadsworth Center laboratory in response to concerns raised by field users of the RMD LPA-1 XRF analyzer (Protec Instrument Corp.) working across the state. The performance issues were investigated for ten field units: five reported as problematic based on user feedback, and 5 that were not. Accuracy was assessed against NIST SRM 2579 lead in paint, which was developed specifically for use with portable XRF analyzers. On average, the absolute bias found was within ±20% at the threshold value for LBP (1.0 mg cm-2) based on the NIST SRM 2579 data. Calibration blocks provided with each analyzer for quality assurance monitoring were evaluated using a different XRF analyzer (Niton XLT 3t 700s GOLDD) operated in painted products mode (µg cm-2). However, when the Niton XRF analyzer was checked against NIST SRM 2579, it was found to have a negative bias. That negative bias was easily corrected using a "calibration" curve with a quadratic fit to the data. NIST-corrected data obtained for the calibration blocks showed assigned values were within the manufacturer's stated tolerance range, albeit with a consistent positive bias. The root cause for 3 of the 5 problematic devices was likely incorrect positioning of the device. A low bias for a fourth device was likely caused by a deteriorated calibration block, and the fifth device, while just within the manufacturer's technical specifications, was the only one confirmed with a low bias. Increased operator training may resolve some of the issues reported in the field; on-going competency assessments may be warranted for this hand-held technology. © 2014 The Royal Society of Chemistry.

  • 90
  • 229