Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CAP

2024

Phase-Shifted Fiber Bragg Grating by Selective Pitch Slicing

Authors
Robalinho, P; Piaia, V; Soares, L; Novais, S; Ribeiro, AL; Silva, S; Frazao, O;

Publication
SENSORS

Abstract
This paper presents a new type of phase-shifted Fiber Bragg Grating (FBG): the sliced-FBG (SFBG). The fabrication process involves cutting a standard FBG inside its grating region. As a result, the last grating pitch is shorter than the others. The optical output signal consists of the overlap between the FBG reflection and the reflection at the fiber-cleaved tip. This new fiber optic device has been studied as a vibration sensor, allowing for the characterization of this sensor in the frequency range of 150 Hz to 70 kHz. How the phase shift in the FBG can be controlled by changing the length of the last pitch is also shown. This device can be used as a filter and a sensing element. As a sensing element, we will demonstrate its application as a vibration sensor that can be utilized in various applications, particularly in monitoring mechanical structures.

2024

Environmental Monitoring of Submarine Cable in Madeira Island

Authors
Cunha, C; Monteiro, C; Martins, HF; Silva, S; Frazao, O;

Publication
EOS ANNUAL MEETING, EOSAM 2024

Abstract
Distributed acoustic sensing (DAS) is a sensing technique that allows continuous data acquisition of strain rate and temperature with exceptional spatial resolution, up to few meters, for extensive lengths up to 100 km. The ubiquitous nature of optical fiber cables rendered DAS an appealing alternative for geophysical sensing, allowing cost-effective data collection with extensive spatial coverage leveraging existing infrastructure. This study presents findings from the deployment of a DAS system on a dark fiber located on the Madeira Island, Portugal. Through the implementation of 2D filtering, simultaneous analysis of data from road traffic, ocean waves, and seismic activity was achieved.

2024

Monitoring optogenetic stimulation of light-sensitive stem cells using a twin-core fiber-based Mach-Zehnder interferometer

Authors
Akbari, F; Zibaii, MI; Chavoshinezhad, S; Layeghi, A; Dargahi, L; Frazao, O;

Publication
OPTICAL FIBER TECHNOLOGY

Abstract
The application of optical fibers in optogenetics is rapidly expanding due to their compactness, cost-effectiveness, sensitivity, and accuracy. This paper introduces a twin-core optical fiber (TCF) sensor employing a Mach-Zehnder interferometer (MZI) to monitor the optogenetic response of opsin-expressing human dental pulp stem cells (hDPSCs) based on refractive index (RI) measuring. In order to improve the RI sensitivity of the sensor, an in fiber Mach-Zeander modulator formed using TCF optics segments can detect changes in the RI in the surrounding medium, and in order to improve the RI sensitivity of the sensor, it is proposed to etch one side of the TCF cladding. The RI sensitivity of the sensor was obtained 233.62 nm/RIU in the range of 1.33-1.4 RIU and 870.01 nm/RIU in the range of 1.4-1.43 RIU, R2 = 0.99. simulation results show that in terms of sensor sensitivity and spectral response, there is a good agreement between the theoretical and experimental results, indicating that the TCF-MZI sensor can perform optical neural recording. In vitro experiments monitored wavelength changes in opsin-expressing and non-opsin-expressing in human dental pulp stem cells (hDPSCs) during optogenetic stimulation with 473 nm pulsed illumination. The results revealed that optical stimulation of ChR2 opsin-expressing hDPSCs leads to active the light sensitive ion channel and changing the effective RI of the surrounding medium. The neural activity is driven by changes in intracellular and extracellular ion concentrations, which lead to alterations in the RI of the cell medium RI variations detectable by the sensor. The novel sensor structure demonstrated its ability to detect RI changes in the cell medium during optogenetic stimulation and fiber optic sensors can be a good candidate for optical recording of the neural activity. Beyond these in vivo applications, label free fiber optic biosensors-based IR measurement can be used for all optical multifunctional probe in stimulation, recording, and sensing of neuroscience applications.

2024

Temperature Dependence of the Thermo-Optic Coefficient of GeO2-Doped Silica Glass Fiber

Authors
Rego, GM;

Publication
Sensors

Abstract
In this paper we derived an expression that allows the determination of the thermo-optic coefficient of weakly-guiding germanium-doped silica fibers, based on the thermal behavior of optical fiber devices, such as, fiber Bragg gratings (FBGs). The calculations rely on the full knowledge of the fiber parameters and on the temperature sensitivity of FBGs. In order to validate the results, we estimated the thermo-optic coefficient of bulk GeO2 glass at 293 K and 1.55 µm to be 18.3 × 10-6 K-1. The determination of this value required to calculate a correction factor which is based on the knowledge of the thermal expansion coefficient of the fiber core, the Pockels’ coefficients (p11 = 0.125, p12 = 0.258 and p44 = -0.0662) and the Poisson ratio (? = 0.161) of the SMF-28 fiber. To achieve that goal, we estimated the temperature dependence of the thermal expansion coefficient of GeO2 and we discussed the dispersion and temperature dependence of Pockels’ coefficients. We have presented expressions for the dependence of the longitudinal and transverse acoustic velocities on the GeO2 concentration used to calculate the Poisson ratio. We have also discussed the dispersion of the photoelastic constant. An estimate for the temperature dependence of the thermo-optic coefficient of bulk GeO2 glass is presented for the 200–300 K temperature range. © 2024 by the author.

2024

Study on fs-laser machining of optical waveguides and cavities in ULE® glass

Authors
Maia, JM; Marques, PVS;

Publication
JOURNAL OF OPTICS

Abstract
The potential of ultrafast laser machining for the design of integrated optical devices in ULE (R) glass, a material known for its low coefficient of thermal expansion (CTE), is addressed. This was done through laser direct writing and characterization of optical waveguides and through the fabrication of 3D cavities inside the glass by following laser irradiation with chemical etching. Type I optical waveguides were produced and their internal loss mechanisms at 1550 nm were studied. Coupling losses lower than 0.2 dB cm-1 were obtained within a wide processing window. However, propagation loss lower than 4.2-4.3 dB cm-1 could not be realized, unlike in other glasses, due to laser-induced photodarkening. Selective-induced etching was observed over a large processing window and found to be maximum when irradiating the glass with a fs-laser beam linearly polarised orthogonally to the scanning direction, akin to what is observed in fused silica laser-machined microfluidic channels. In fact, the etching selectivity and surface roughness of laser-machined ULE (R) glass was found to be similar to that of fused silica, allowing some of the already reported microfluidic and optofluidic devices to be replicated in this low CTE glass. An example of a 3D cavity with planar-spherically convex interfaces is given. Due to the thermal properties of ULE (R) glass, these cavities can be employed as interferometers for wavelength and/or temperature referencing.

2024

High-visibility Fabry-P<acute accent>erot interferometer fabricated in ULE® glass through fs-laser machining

Authors
Maia, JM; Marques, PVS;

Publication
OPTICS AND LASER TECHNOLOGY

Abstract
Low-finesse Fabry-Perot interferometers (FPI) with a plano-convex geometry are fabricated in ULE (R) glass through ultrafast laser machining. With this geometry, it is possible to overcome beam divergence effects that contribute to the poor fringe visibility usually observed in 100-mu m or longer planar-planar FPIs. By replacing the planar surface with a spherical one, the diverging beam propagating through the cavity is re-focused back at the entrance of the lead-in fiber upon reflection at this curved interface, thereby balancing out the intensities of both interfering beams and enhancing the visibility. The design of a 3D shaped cavity with a spherical sidewall is only made possible through fs-laser direct writing followed by chemical etching. In this technique, the 3D volume is reduced to writing of uniformly vertically spaced 2D layers with unique geometry, which are then selectively removed during chemical etching with HF acid. The radius of curvature that maximizes fringe visibility is computed using a numerical tool that is experimentally validated. By choosing the optimal radius of curvature, uniform visibilities in the range of 0.98-1.00 are measured for interferometers produced with cavity lengths spanning from 100 to 1000 mu m.

  • 6
  • 231