Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CAP

2013

Post-processed fabry-pérot microcavity tip sensors for temperature measurement

Authors
Ferreira, MS; Bierlich, J; Unger, S; Schuster, K; Santos, JL; Frazao, O;

Publication
Optics InfoBase Conference Papers

Abstract
A Fabry-Pérot microcavity tip sensor based on the post-process of a special design double-cladding optical fiber is proposed. The sensor is subjected to temperature variations in both air and water. © OSA 2013.

2013

Post-Processing of Fabry-Perot Microcavity Tip Sensor

Authors
Ferreira, MS; Bierlich, J; Unger, S; Schuster, K; Santos, JL; Frazao, O;

Publication
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
A Fabry-Perot microcavity tip sensor fabricated by post-processing of a special design double-cladding optical fiber is proposed. The produced fiber has a pure silica core, an outer cladding, and an inner silica cladding surrounding the core doped with phosphorous. When subjected to chemical etching post-processing, the whole ring region is removed and light is guided in the core region. The sensing head is created by splicing this fiber to single mode fiber and applying chemical etching to the fiber end. The core is forming a tip and it is thus surrounded by air. The Fabry-Perot microcavity tip sensor is subjected to temperature, and a sensitivity of 15.5 pm/degrees C is obtained.

2013

Remote fiber sensors and optical amplification

Authors
Pontes, MJ; Coelho, TVN; Carvalho, JP; Santos, JL; Guerreiro, A;

Publication
8TH IBEROAMERICAN OPTICS MEETING AND 11TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND APPLICATIONS

Abstract
This work discusses remote fiber sensors enabled by optical amplification. Continuous wave numerical modeling based on the propagation of pumps and signal lasers coupled to optical fibers explores Raman amplification schemes to predict the sensor's behavior. Experimental analyses report the results to a temperature remote optical sensor with 50 km distance between the central unit and the sensor head. An electrical interrogation scheme is used due to their low cost and good time response. Different architectures in remote sensor systems are evaluated, where diffraction gratings are the sensor element. A validation of calculated results is performed by experimental analyses and, as an application, the noise generated by Raman amplification in the remote sensors systems is simulated applying such numerical modeling. The analyses of sensors systems based on diffraction gratings requires optical broadband sources to interrogate the optical sensor unit, mainly in long period gratings that shows a characteristic rejection band. Therefore, the sensor distance is limited to a few kilometers due to the attenuation in optical fibers. Additional attenuation is introduced by the sensor element. Hence, to extend the distance in the optical sensor system, the optical amplification system is needed to compensate the losses in the optical fibers. The Raman amplification technology was selected mainly due to the flexibility in the gain bandwidth. The modeling can be applied to sensor systems that monitor sites located at long distances, or in places that the access is restricted due to harsh environment conditions in such cases conventional sensors are relatively fast deteriorated.

2013

Review of fiber-optic pressure sensors for biomedical and biomechanical applications

Authors
Roriz, P; Frazao, O; Lobo Ribeiro, AB; Santos, JL; Simoes, JA;

Publication
JOURNAL OF BIOMEDICAL OPTICS

Abstract
As optical fibers revolutionize the way data is carried in telecommunications, the same is happening in the world of sensing. Fiber-optic sensors (FOS) rely on the principle of changing the properties of light that propagate in the fiber due to the effect of a specific physical or chemical parameter. We demonstrate the potentialities of this sensing concept to assess pressure in biomedical and biomechanical applications. FOSs are introduced after an overview of conventional sensors that are being used in the field. Pointing out their limitations, particularly as minimally invasive sensors, is also the starting point to argue FOSs are an alternative or a substitution technology. Even so, this technology will be more or less effective depending on the efforts to present more affordable turnkey solutions and peer-reviewed papers reporting in vivo experiments and clinical trials. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.18.5.050903]

2013

SPR Sensing with Bimetallic Layers in Optical Fibers and Phase Interrogation

Authors
Moayyed, H; Leite, IT; Coelho, L; Santos, JL; Viegas, D;

Publication
8TH IBEROAMERICAN OPTICS MEETING AND 11TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND APPLICATIONS

Abstract
An analytical model based on geometrical optics and multilayer transfer matrix method is applied to determine the sensing properties of tapered optical fiber based SPR sensors incorporating bimetallic (Gold and Silver) layers, particularly when phase interrogation is considered. Phase interrogation is studied as a methodology to attain enhanced sensitivities. The performance of the sensing heads as function of the bimetallic layers and taper parameters is analyzed. It is shown the bimetallic combination is capable to provide larger values of sensitivity compared with the single layer approach. The results derived from this study are guiding the experimental study of these structures.

2013

A vibration sensor based on a distributed Bragg reflector fibre laser

Authors
Ferreira, MS; Becker, M; Bartelt, H; Mergo, P; Santos, JL; Frazao, O;

Publication
LASER PHYSICS LETTERS

Abstract
A vibration sensor based on a distributed Bragg reflector (DBR) is proposed. The gratings that form the cavity are written in erbium-doped fibre using the femtosecond laser technique. In this configuration, one grating of the DBR acts as a sensor whilst the other one acts as a spectral filter. The active sensor, subjected to vibration measurements, exhibits a response of up to similar to 1.5 kHz.

  • 112
  • 236