Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2025

Reconciling strategic and operational alignment in organizations

Autores
Faria, B; Rodrigues, JC;

Publicação

Abstract

2025

Fast Computation of the Discrete Fourier Transform Square Index Coefficients

Autores
Queiroz, S; Vilela, P; Monteiro, H; Li, X;

Publicação
IEEE SIGNAL PROCESSING MAGAZINE

Abstract
Provides society information that may include news, reviews or technical notes that should be of interest to practitioners and researchers. © 2025 Elsevier B.V., All rights reserved.

2025

Wine tourism meets the metaverse: A case study

Autores
Barbosa, B; Singh, S; Yetik, T; Carvalho, C;

Publicação
Cases on Metaverse and Consumer Experiences

Abstract
Technological developments are presenting new ways for companies to organize their businesses and offer new products, services, and experiences to their customers. The Metaverse allows the participation and interaction of individuals in immersive experiences that merge virtual and real worlds. The adoption of metaverse platforms by companies worldwide is growing steadily, with the potential to change business in various industries, including tourism. However, the literature on the Metaverse applied to tourism is very scarce. This chapter addresses this gap by exploring a case study of the implementation of a Metaverse strategy by a Portuguese wine brand, Sandeman, as part of their wine tourism experience offerings. The case study is built on secondary data, observation, and interviews with tourists. © 2025, IGI Global Scientific Publishing. All rights reserved.

2025

Enhancing Weakly-Supervised Video Anomaly Detection With Temporal Constraints

Autores
Caetano, F; Carvalho, P; Mastralexi, C; Cardoso, JS;

Publicação
IEEE ACCESS

Abstract
Anomaly Detection has been a significant field in Machine Learning since it began gaining traction. In the context of Computer Vision, the increased interest is notorious as it enables the development of video processing models for different tasks without the need for a cumbersome effort with the annotation of possible events, that may be under represented. From the predominant strategies, weakly and semi-supervised, the former has demonstrated potential to achieve a higher score in its analysis, adding to its flexibility. This work shows that using temporal ranking constraints for Multiple Instance Learning can increase the performance of these models, allowing the focus on the most informative instances. Moreover, the results suggest that altering the ranking process to include information about adjacent instances generates best-performing models.

2025

<i>MedShapeNet</i> - a large-scale dataset of 3D medical shapes for computer vision

Autores
Li, JN; Zhou, ZW; Yang, JC; Pepe, A; Gsaxner, C; Luijten, G; Qu, CY; Zhang, TZ; Chen, XX; Li, WX; Wodzinski, M; Friedrich, P; Xie, KX; Jin, Y; Ambigapathy, N; Nasca, E; Solak, N; Melito, GM; Vu, VD; Memon, AR; Schlachta, C; De Ribaupierre, S; Patel, R; Eagleson, R; Chen, XJ; Mächler, H; Kirschke, JS; de la Rosa, E; Christ, PF; Li, HB; Ellis, DG; Aizenberg, MR; Gatidis, S; Küstner, T; Shusharina, N; Heller, N; Andrearczyk, V; Depeursinge, A; Hatt, M; Sekuboyina, A; Löffler, MT; Liebl, H; Dorent, R; Vercauteren, T; Shapey, J; Kujawa, A; Cornelissen, S; Langenhuizen, P; Ben Hamadou, A; Rekik, A; Pujades, S; Boyer, E; Bolelli, F; Grana, C; Lumetti, L; Salehi, H; Ma, J; Zhang, Y; Gharleghi, R; Beier, S; Sowmya, A; Garza Villarreal, EA; Balducci, T; Angeles Valdez, D; Souza, R; Rittner, L; Frayne, R; Ji, Y; Ferrari, V; Chatterjee, S; Dubost, F; Schreiber, S; Mattern, H; Speck, O; Haehn, D; John, C; Nürnberger, A; Pedrosa, J; Ferreira, C; Aresta, G; Cunha, A; Campilho, A; Suter, Y; Garcia, J; Lalande, A; Vandenbossche, V; Van Oevelen, A; Duquesne, K; Mekhzoum, H; Vandemeulebroucke, J; Audenaert, E; Krebs, C; van Leeuwen, T; Vereecke, E; Heidemeyer, H; Röhrig, R; Hölzle, F; Badeli, V; Krieger, K; Gunzer, M; Chen, JX; van Meegdenburg, T; Dada, A; Balzer, M; Fragemann, J; Jonske, F; Rempe, M; Malorodov, S; Bahnsen, FH; Seibold, C; Jaus, A; Marinov, Z; Jaeger, PF; Stiefelhagen, R; Santos, AS; Lindo, M; Ferreira, A; Alves, V; Kamp, M; Abourayya, A; Nensa, F; Hörst, F; Brehmer, A; Heine, L; Hanusrichter, Y; Wessling, M; Dudda, M; Podleska, LE; Fink, MA; Keyl, J; Tserpes, K; Kim, MS; Elhabian, S; Lamecker, H; Zukic, D; Paniagua, B; Wachinger, C; Urschler, M; Duong, L; Wasserthal, J; Hoyer, PF; Basu, O; Maal, T; Witjes, MJH; Schiele, G; Chang, TC; Ahmadi, SA; Luo, P; Menze, B; Reyes, M; Deserno, TM; Davatzikos, C; Puladi, B; Fua, P; Yuille, AL; Kleesiek, J; Egger, J;

Publicação
BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK

Abstract
Objectives: The shape is commonly used to describe the objects. State-of-the-art algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from the growing popularity of ShapeNet (51,300 models) and Princeton ModelNet (127,915 models). However, a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instruments is missing. Methods: We present MedShapeNet to translate data-driven vision algorithms to medical applications and to adapt state-of-the-art vision algorithms to medical problems. As a unique feature, we directly model the majority of shapes on the imaging data of real patients. We present use cases in classifying brain tumors, skull reconstructions, multi-class anatomy completion, education, and 3D printing. Results: By now, MedShapeNet includes 23 datasets with more than 100,000 shapes that are paired with annotations (ground truth). Our data is freely accessible via a web interface and a Python application programming interface and can be used for discriminative, reconstructive, and variational benchmarks as well as various applications in virtual, augmented, or mixed reality, and 3D printing. Conclusions: MedShapeNet contains medical shapes from anatomy and surgical instruments and will continue to collect data for benchmarks and applications. The project page is: https://medshapenet.ikim.nrw/.

2025

Radio Propagation as a Service: Raytracing-Based Channel Simulation from Camera Data

Autores
Sasan Sharifipour; Tuomas Määttä; Niklas Vaara; Pekka Sangi; Lam Huynh; Janne Mustaniemi; Janne Heikkilä; Luis M. Pessoa; Filipe B. Teixeira; Miguel Bordallo López;

Publicação
2025 33rd European Signal Processing Conference (EUSIPCO)

Abstract

  • 95
  • 4391