2025
Autores
Lopes, D; Pereira, T; Gonçalves, A; Cunha, F; Lopes, F; Antunes, J; Santos, V; Coutinho, F; Barreiros, J; Duraes, J; Santos, P; Simoes, F; Ferreira, P; Freitas, EDCD; Trovao, JPF; Ferreira, JP; Ferreira, NMF;
Publicação
APPLIED SCIENCES-BASEL
Abstract
This paper presents the development of fleet management software for mobile robots, including AGV and AMR technologies, within the scope of a case study from the GreenAuto project. The system was designed to integrate position and status data from different robots, unifying this information into a single map. To achieve this, a web-based platform was developed to allow the simultaneous, real-time visualization of all robots in operation. However, the main challenge of this research lies in the heterogeneity of the fleet, which comprises robots of different makes and models from various manufacturers, each using distinct data formats. The proposed approach addresses this by facilitating fleet monitoring and management, ensuring a greater efficiency and coordination in the robot movement. The results demonstrate that the platform improves the traceability and operational supervision, promoting the optimized management of mobile robots. It is concluded that the proposed solution contributes to industrial automation by providing an intuitive and centralized interface, enabling future expansions for new functionalities and the integration with other emerging technologies. The proposed system demonstrated efficiency in updating and supervising operations, with an average latency of 120 ms for task status updates and an interface refresh rate of less than 1 s, enabling near real-time supervision and facilitating operational decision-making.
2025
Autores
Silva, MF; Dias, A; Guedes, P; Barbosa, R; Estrela, J; Moura, A; Cerqueira, V;
Publicação
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC
Abstract
There is a strong need to motivate students to learn science, technology, engineering, and mathematics (STEM) subjects. This is a problem not only at lower educational levels, but also at college institutions. With this idea in mind, the School of Engineering of the Porto Polytechnic (ISEP) Electrical Engineering Department decided, in 2021, to launch a robotics competition in order to foster students' interest in the areas of robotics and automation. This event, named Robotics@ISEP Open, aims to raise awareness of the area of electronics, computing, and robotics among students, involving them in the use of techniques and tools in this area, and encompasses three distinct robotics competitions covering both manipulator arms and mobile robots. It is based on two main points of interest: (i) robotic competitions and (ii) outside class training in robotics, aimed at students who want support to participate in competitions. Since its first edition, the event has grown and internationalized and has already become a milestone in the academic life of ISEP. This paper presents the motivations that led to the creation of this event, its main organizational aspects, and the competitions that are part of it, as well as some results gathered from the experience accumulated in organizing it.
2025
Autores
Fernandes, L; Pereira, T; Oliveira, HP;
Publicação
IEEE ACCESS
Abstract
Segmentation of lung nodules in CT images is an important step during the clinical evaluation of patients with lung cancer. Furthermore, early assessment of the cancer is crucial to increase the overall survival chances of patients with such disease, and the segmentation of lung nodules can help detect the cancer in its early stages. Consequently, there are many works in the literature that explore the use of neural networks for the segmentation of lung nodules. However, these frameworks tend to rely on accurate labelling of the nodule centre to then crop the input image. Although such works are able to achieve remarkable results, they do not take into account that the healthcare professional may fail to correctly label the centre of the nodule. Therefore, in this work, we propose a new framework based on the U-Net model that allows to correct such inaccuracies in an interactive fashion. It is composed of two U-Net models in cascade, where the first model is used to predict a rough estimation of the lung nodule location and the second model refines the generated segmentation mask. Our results show that the proposed framework is able to be more robust than the studied baselines. Furthermore, it is able to achieve state-of-the-art performance, reaching a Dice of 91.12% when trained and tested on the LIDC-IDRI public dataset.
2025
Autores
Alvarez, ML; Bahillo, A; Arjona, L; Nogueira, DM; Gomes, EF; Jorge, AM;
Publicação
IEEE Access
Abstract
Sound-based uroflowmetry (SU) is a non-invasive technique emerging as an alternative to traditional uroflowmetry (UF) to calculate the voiding flow rate based on the sound generated by the urine impacting the water in a toilet, enabling remote monitoring and reducing the patient burden and clinical costs. This study trains four different machine learning (ML) models (random forest, gradient boosting, support vector machine and convolutional neural network) using both regression and classification approaches to predict and categorize the voiding flow rate from sound events. The models were trained with a dataset that contains sounds from synthetic void events generated with a high precision peristaltic pump and a traditional toilet. Sound was simultaneously recorded with three devices: Ultramic384k, Mi A1 smartphone and Oppo Smartwatch. To extract the audio features, our analysis showed that segmenting the audio signals into 1000 ms segments with frequencies up to 16 kHz provided the best results. Results show that random forest achieved the best performance in both regression and classification tasks, with a mean absolute error (MAE) of 0.9, 0.7 and 0.9 ml/s and quadratic weighted kappa (QWK) of 0.99, 1.0 and 1.0 for the three devices. To evaluate the models in a real environment and assess the effectiveness of training with synthetic data, the best-performing models were retrained and validated using a real voiding sounds datset. The results reported an MAE below 2.5 ml/s and a QWK above 0.86 for regression and classification tasks, respectively. © IEEE. 2013 IEEE.
2025
Autores
Pereira, MR; Tosin, R; dos Santos, FN; Tavares, F; Cunha, M;
Publicação
COMPUTERS AND ELECTRONICS IN AGRICULTURE
Abstract
The present critical literature review describes the state-of-the-art innovative proximal (ground-based) solutions for plant disease diagnosis, suitable for promoting more precise and efficient phytosanitary measures. Research and development of new sensors for this purpose are currently a challenge. Present procedures and diagnosis techniques depend on visual characteristics and symptoms to be initiated and applied, compromising an early intervention. Also, these methods were designed to confirm the presence of pathogens, which did not have the required high throughput and speed to support real-time agronomic decisions in field extensions. Proximal sensor-based systems are a reasonable tool for an efficient and economic disease assessment. This work focused on identifying the application of optical and spectroscopic sensors as a tool for disease diagnosis. Biophoton emission, fluorescence spectroscopy, laser-induced breakdown spectroscopy, multi- and hyperspectral spectroscopy (HS), nuclear magnetic resonance spectroscopy, Raman spectroscopy, RGB imaging, thermography, volatile organic compounds assessment, and X-ray fluorescence were described due to their relevant potential. Nevertheless, some techniques revealed a low technology readiness level (TRL). The main conclusions identify HS, single and multi-spatial point observation, as the most applied methods for early plant disease diagnosis studies (88%), combined with distinct feature selection (FeS), dimensionality reduction (DR), and modeling techniques. Vegetation indices (28%) and principal component analysis (19%) were the most popular FeS and DR approaches, highlighting the most relevant wavelengths contributing to disease diagnosis. In modeling, classification was the most applied technique (80%), used mainly for binary and multi-class health status identification. Regression was used in the remaining (21%) scientific works screened. The data was collected primarily in laboratory conditions (62%), and a few works were performed in field conditions (21%). Regarding the study's etiological agent responsible for causing the disease, fungi (53%) and viruses (23%) were the most analyzed group of pathogens found in the literature. Overall, proximal sensors are suitable for early plant disease diagnosis before and after symptom appearance, presenting classification accuracies mostly superior to 71% and regression coefficients superior to 61%. Nevertheless, additional research regarding the study of specific host-pathogen interactions is necessary.
2025
Autores
Cordeiro, A; Rocha, LF; Boaventura-Cunha, J; Pires, EJS; Souza, JP;
Publicação
Computers & Industrial Engineering
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.