2023
Autores
Cunha, B; Madureira, A; Gonçalves, L;
Publicação
Lecture Notes in Networks and Systems
Abstract
Multiple Sclerosis is one of the most common diseases of the central nervous system that affects millions of people worldwide. The prediction of this disease is considered a challenge since the symptoms are highly variable as the disease worsens and, as such, it has emerged as a topic that artificial intelligence scientists have tried to challenge. With the goal of providing a brief review that may serve as a starting point for future researchers on such a deep field, this paper puts forward a summary of artificial intelligence applications for Multiple Sclerosis evaluation and diagnosis. It includes a detailed recap of what Multiple Sclerosis is, the connections between artificial intelligence and the human brain, and a description of the main proposals in this field. It also concludes what the most reliable methods are at the present time, discussing approaches that achieve accuracy values up to 98.8%. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
2023
Autores
de Matos, B; Salles, R; Mendes, J; Gouveia, JR; Baptista, AJ; Moura, P;
Publicação
MATHEMATICS
Abstract
Humanity faces serious problems related to water supply, which will be aggravated by population growth. The water used in human activities must be treated to make it available again without posing risks to human health and the environment. In this context, Wastewater Treatment Plants (WWTPs) have gained importance. The treatment process in WWTPs is complex, consisting of several stages, which consume considerable amounts of resources, mainly electrical energy. Minimizing such energy consumption while satisfying quality and environmental requirements is essential, but it is a challenging task due to the complexity of the processes carried out in WWTPs. One form of evaluating the performance of WWTPs is through the well-known Key Performance Indicators (KPIs). The KPIs are numerical indicators of process performance, being a simple and common way to assess the efficiency and eco-efficiency of a process. By applying KPIs to WWTPs, techniques for monitoring, predicting, controlling, and optimizing the efficiency and eco-efficiency of WWTPs can be created or improved. However, the use of computational methodologies that use KPIs (KPIs-based methodologies) is still limited. This paper provides a literature review of the current state-of-the-art of KPI-based methodologies to monitor, control and optimize energy efficiency and eco-efficiency in WWTPs. In this paper, studies presented on 21 papers are identified, assessed and synthesized, 12 being related to monitoring and predicting problems, and 9 related to control and optimization problems. Future research directions relating to unresolved problems are also identified and discussed.
2023
Autores
Carneiro, AMC; Alves, AFC; Coelho, RPC; Cardoso, JS; Pires, FMA;
Publicação
FINITE ELEMENTS IN ANALYSIS AND DESIGN
Abstract
Coupled multi-scale finite element analyses have gained traction over the last years due to the increasing available computational resources. Nevertheless, in the pursuit of accurate results within a reasonable time frame, replacing these high-fidelity micromechanical simulations with reduced-order data-driven models has been explored recently by the modelling community. In this work, two classes of machine learning models are trained for a porous hyperelastic microstructure to predict (i) whether the microscopic equilibrium problem is likely to fail and (ii) the stress-strain response. The former may be used to identify critical macroscopic points where one may fall back to the high-fidelity analysis and possibly apply convergence bowl-widening techniques. For the latter, both a linear regression with polynomial features and artificial Neural Networks have been used, and the required stress-strain derivatives for solving the equilibrium problem have been derived analytically. A weight regularisation is introduced to stabilise the tangent operator and several strategies are discussed for imposing null stresses in undeformed configurations for both regression models. The regression techniques, here analysed exclusively in the context of porous hyperelastic materials, evidence very promising prospects to accelerate multi-scale analyses of solids under large deformation.
2023
Autores
de Oliveira, AR; Collado, JV; Saraiva, JT; Campos, FA;
Publicação
2023 19TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM
Abstract
This paper presents a new hybridization approach to improve CEVESA, a multi-zonal hydro-thermal equilibrium model for the joint dispatch of energy and secondary reserve capacity for the Iberian Electricity Market (MIBEL). Like similar fundamental models, CEVESA provides market prices that typically show an average systematic bias compared to real market prices. This is because these models do not always capture the true variable production costs of the generation units or the additional markups that generation companies may include in their pricing strategy. Based on real market outcomes, this paper proposes a new methodology built on a previous hybridization approach that estimated a constant monthly markup per thermal offering unit [1]. This new methodology is based on a functional estimation of the offering unit cost (or bidding price), using as input the initial CEVESA production costs based on the fuel and emissions commodities' prices, correcting the power plants' markup.
2023
Autores
Matos P.; Alves R.; Gonçalves J.;
Publicação
RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao
Abstract
The authors present the Learning Based on Effective Solutions that derives from Project-Based Learning, but applied to real problems in order to build effective solutions. The emphasis is placed on effectiveness in the assumption that encourages greater involvement and commitment on the part of students, ensuring a context that is intended to be more attractive and closer to what will be the professional reality of students. Effectiveness is measured by the functionalities considered essential for the full resolution of the problem, but also by the feasibility of the application being effectively used, without the need for continued student involvement. Empirical evidence points to a clear increase in the acquisition of skills, in the number of students approved and in the improvement of the grades. It was also possible to find a strategic positioning of cooperation with the local community, in which everyone wins (students, teachers, institution, local and regional entities and, employers).
2023
Autores
Reis Pereira, M; Tosin, R; Martins, C; Dos Santos, FN; Tavares, F; Cunha, M;
Publicação
Engineering Proceedings
Abstract
The potential of hyperspectral UV–VIS–NIR reflectance for the in-field, non-destructive discrimination of bacterial canker on kiwi leaves caused by Pseudomonas syringae pv. actinidiae (Psa) was analyzed. Spectral data (325–1075 nm) of twenty kiwi plants were obtained in vivo and in situ with a handheld spectroradiometer in two commercial kiwi orchards in northern Portugal over 15 weeks, resulting in 504 spectral measurements. The suitability of different vegetation indexes (VIs) and applied predictive models (based on supervised machine learning algorithms) for classifying non-symptomatic and symptomatic kiwi leaves was evaluated. Eight distinct types of VIs were identified as relevant for disease diagnosis, highlighting the relevance of the Green, Red, Red-Edge, and NIR spectral features. The class prediction was achieved with good model metrics, achieving an accuracy of 0.71, kappa of 0.42, sensitivity of 0.67, specificity of 0.75, and F1 of 0.67. Thus, the present findings demonstrated the potential of hyperspectral UV–VIS–NIR reflectance for the non-destructive discrimination of bacterial canker on kiwi leaves. © 2023 by the authors.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.