2025
Autores
Ferreira, R; Silva, J; Romariz, M; Pinto, D; Araújo, RJ; Santinha, J; Gouveia, P; Oliveira, HP;
Publicação
2025 IEEE 25th International Conference on Bioinformatics and Bioengineering (BIBE)
Abstract
2025
Autores
Tinoco, V; Silva, MF; Santos, FN; Morais, R; Magalhaes, SA; Oliveira, PM;
Publicação
INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL
Abstract
With the global population on the rise and a declining agricultural labor force, the realm of robotics research in agriculture, such as robotic manipulators, has assumed heightened significance. This article undertakes a comprehensive exploration of the latest advancements in controllers tailored for robotic manipulators. The investigation encompasses an examination of six distinct controller paradigms, complemented by the presentation of three exemplars for each category. These paradigms encompass: (i) adaptive control, (ii) sliding mode control, (iii) model predictive control, (iv) robust control, (v) fuzzy logic control and (vi) neural network control. The article further introduces and presents comparative tables for each controller category. These controllers excel in tracking trajectories and efficiently reaching reference points with rapid convergence. The key point of divergence among these controllers resides in their inherent complexity.
2025
Autores
Zolfagharnasab, MH; Freitas, N; Gonçalves, T; Bonci, E; Mavioso, C; Cardoso, MJ; Oliveira, HP; Cardoso, JS;
Publicação
ARTIFICIAL INTELLIGENCE AND IMAGING FOR DIAGNOSTIC AND TREATMENT CHALLENGES IN BREAST CARE, DEEP-BREATH 2024
Abstract
Breast cancer treatments often affect patients' body image, making aesthetic outcome predictions vital. This study introduces a Deep Learning (DL) multimodal retrieval pipeline using a dataset of 2,193 instances combining clinical attributes and RGB images of patients' upper torsos. We evaluate four retrieval techniques: Weighted Euclidean Distance (WED) with various configurations and shallow Artificial Neural Network (ANN) for tabular data, pre-trained and fine-tuned Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), and a multimodal approach combining both data types. The dataset, categorised into Excellent/Good and Fair/Poor outcomes, is organised into over 20K triplets for training and testing. Results show fine-tuned multimodal ViTs notably enhance performance, achieving up to 73.85% accuracy and 80.62% Adjusted Discounted Cumulative Gain (ADCG). This framework not only aids in managing patient expectations by retrieving the most relevant post-surgical images but also promises broad applications in medical image analysis and retrieval. The main contributions of this paper are the development of a multimodal retrieval system for breast cancer patients based on post-surgery aesthetic outcome and the evaluation of different models on a new dataset annotated by clinicians for image retrieval.
2025
Autores
Gonçalves, A; Varajão, J; Moura Oliveira, P; Moura, I;
Publicação
Digital Government: Research and Practice
Abstract
2025
Autores
da Silva Cardoso, H; Rocio, V;
Publicação
Communications in Computer and Information Science - Technology and Innovation in Learning, Teaching and Education
Abstract
2025
Autores
Zamani, M; Prieta Pintado, Fdl; Pinto, T;
Publicação
Comput. Electr. Eng.
Abstract
[No abstract available]
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.