2025
Autores
Castro, IAA; Oliveira, HP; Correia, R; Hayes-Gill, B; Morgan, SP; Korposh, S; Gomez, D; Pereira, T;
Publicação
PHYSIOLOGICAL MEASUREMENT
Abstract
Objective.The detection of arterial pulsating signals at the skin periphery with Photoplethysmography (PPG) are easily distorted by motion artifacts. This work explores the alternatives to the aid of PPG reconstruction with movement sensors (accelerometer and/or gyroscope) which to date have demonstrated the best pulsating signal reconstruction. Approach. A generative adversarial network with fully connected layers is proposed for the reconstruction of distorted PPG signals. Artificial corruption was performed to the clean selected signals from the BIDMC Heart Rate dataset, processed from the larger MIMIC II waveform database to create the training, validation and testing sets. Main results. The heart rate (HR) of this dataset was further extracted to evaluate the performance of the model obtaining a mean absolute error of 1.31 bpm comparing the HR of the target and reconstructed PPG signals with HR between 70 and 115 bpm. Significance. The model architecture is effective at reconstructing noisy PPG signals regardless the length and amplitude of the corruption introduced. The performance over a range of HR (70-115 bpm), indicates a promising approach for real-time PPG signal reconstruction without the aid of acceleration or angular velocity inputs.
2025
Autores
Martins, AR; Ferreira, MC; Fernandes, CS;
Publicação
International Journal of Medical Informatics
Abstract
2025
Autores
Silva, P; Dinis, R; Coelho, A; Ricardo, M;
Publicação
Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering - Simulation Tools and Techniques
Abstract
2025
Autores
Martins, AR; Ferreira, MC; Fernandes, CS;
Publicação
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS
Abstract
Purpose:To synthesizethe availableevidenceaboutthe use of HealthInformationTechnology(HIT)to supportpatientsduringhemodialysis.Methods:TheJoannaBriggsInstitute's methodologicalguidelinesfor scopingreviewsandthe PRISMA-ScRchecklistwereemployed.BibliographicsearchesacrossMEDLINE (R), CINAHL (R), PsychologyandBehavioralSciencesCollection,Scopus,MedicLatina,and Cochraneyielded932 records.Results:Eighteenstudiespublishedbetween2003and2023wereincluded.Theyexploreda rangeof HITs,includingvirtualreality,exergames,websites,and mobileapplications,all specificallydevelopedfor use duringthe intradialyticperiod.Conclusion:Thisstudyhighlightsthe HITsdevelopedfor use duringhemodialysistreatment,supportingphysicalexercise,diseasemanagement,and enhancementof self-efficacyand self-care.
2025
Autores
Pedroso, JP; Ikeda, S;
Publicação
European Journal of Operational Research
Abstract
This paper addresses the problem of maximizing the expected size of a matching in the case of unreliable vertices and/or edges. The assumption is that the solution is built in several steps. In a given step, edges with successfully matched vertices are made permanent; but upon edge or vertex failures, the remaining vertices become eligible for reassignment. This process may be repeated a given number of times, and the objective is to end with the overall maximum number of matched vertices. An application of this problem is found in kidney exchange programs, going on in several countries, where a vertex is an incompatible patient–donor pair and an edge indicates cross-compatibility between two pairs; the objective is to match these pairs so as to maximize the number of served patients. A new scheme is proposed for matching rearrangement in case of failure, along with a prototype algorithm for computing the optimal expectation for the number of matched edges (or vertices), considering a possibly limited number of rearrangements. Computational experiments reveal the relevance and limitations of the algorithm, in general terms and for the kidney exchange application. © 2025 The Authors
2025
Autores
Capela, D; Pessanha, S; Lopes, T; Cavaco, R; Teixeira, J; Ferreira, MFS; Magalhaes, P; Jorge, PAS; Silva, NA; Guimaraes, D;
Publicação
JOURNAL OF HAZARDOUS MATERIALS
Abstract
Management and reuse of wood waste can be a challenging process due to the frequent presence of hazardous contaminants. Conventional detection methods are often limited by the need for excessive sample preparation and lengthy and expensive analysis. Laser-induced Breakdown Spectroscopy (LIBS) is a rapid and micro- destructive technique that can be a promising alternative, providing in-situ and real-time analysis, with minimal to no sample preparation required. In this study, LIBS imaging was used to analyze wood waste samples to determine the presence of contaminants such as As, Ba, Cd, Cr, Cu, Hg, Pb, Sb, and Ti. For this analysis, a methodology based on detecting three lines per element was developed, offering a screening method that can be easily adapted to perform qualitative analysis in industrial contexts with high throughput operations. For the LIBS experimental lines selection, control and reference samples, and a pilot set of 10 wood wastes were analysed. Results were validated by two different X-ray Fluorescence (XRF) systems, an imaging XRF and a handheld XRF, that provided spatial elemental information and spectral information, respectively. The results obtained highlighted LIBS ability to detect highly contaminated samples and the importance of using a 3-line criteria to mitigate spectral interferences and discard outliers. To increase the dataset, a LIBS large-scale study was performed using 100 samples. These results were only corroborated by the XRF-handheld system, as it provides a faster alternative. In particular cases, ICP-MS analysis was also performed. The success rates achieved, mostly above 88 %, confirm the capability of LIBS to perform this analysis, contributing to more sustainable waste management practices and facilitating the quick identifi- cation and remediation of contaminated materials.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.