Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2026

Machine Learning and Knowledge Discovery in Databases. Research Track and Applied Data Science Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part VIII

Autores
Pfahringer, B; Japkowicz, N; Larrañaga, P; Ribeiro, RP; Dutra, I; Pechenizkiy, M; Cortez, P; Pashami, S; Jorge, AM; Soares, C; Abreu, PH; Gama, J;

Publicação
ECML/PKDD (8)

Abstract

2026

Abnormal Human Behaviour Detection Using Normalising Flows and Attention Mechanisms

Autores
Nogueira, AFR; Oliveira, HP; Teixeira, LF;

Publicação
PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2025, PT I

Abstract
The aim of this work is to explore normalising flows to detect anomalous behaviours which is an essential task mainly for surveillance systems-related applications. To accomplish that, a series of ablation studies were performed by varying the parameters of the Spatio-Temporal Graph Normalising Flows (STG-NF) model [3] and combining it with attention mechanisms. Out of all these experiments, it was only possible to improve the state-of-the-art result for the UBnormal dataset by 3.4 percentual points (pp), for the Avenue by 4.7 pp and for the Avenue-HR by 3.2 pp. However, further research remains urgent to find a model that can give the best performance across different scenarios. The inaccuracies of the pose tracking and estimation algorithm seems to be the main factor limiting the models' performance. The code is available at https://github.com/AnaFilipaNogueira/Abnormal-Human-Behaviour-Detection- using-Normalising-Flows-and- Attention-Mechanisms.

2026

Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track and Demo Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part X

Autores
Dutra, I; Pechenizkiy, M; Cortez, P; Pashami, S; Pasquali, A; Moniz, N; Jorge, AM; Soares, C; Abreu, PH; Gama, J;

Publicação
ECML/PKDD (10)

Abstract

2026

Comparing and extending satisfiability solution methods for the resource-constrained project scheduling problem

Autores
Coelho, J; Vanhoucke, M;

Publicação
COMPUTERS & OPERATIONS RESEARCH

Abstract
This paper solves the resource-constrained project scheduling problem (RCPSP) with a satisfiability problem (SAT) solver. This paper builds further on various existing SAT models for this well-known project scheduling problem and extends them with two methods to satisfy the resource constraints. Specifically, we use the wellknown minimal forbidden sets and compare them with the so-called covers that are traditionally used in SAT implementations. Moreover, we also implement an existing binary decision trees approach under various settings and extend the model with networks with adders, so far never used for solving the RCPSP, to guarantee that resource constraints are satisfied. The algorithms are tested under different settings on a set of 13,413 project instances with diverse network and resource structures, and the experiments demonstrate that a combination of these approaches help in finding better solutions within a reasonable time. Moreover, 393 new lower bounds, 62 new upper bounds, and 290 optimally solved instances (including 18 from the PSPLIB) have been discovered, which, to the best of our knowledge, had not been found before. The strong performance of the new algorithm motivated additional experiments, and the preliminary results suggest several promising directions for future research.

2026

Deciphering the Silent Signals: Unveiling Frequency Importance for Wi-Fi-Based Human Pose Estimation with Explainability

Autores
Capozzi, L; Ferreira, L; Gonçalves, T; Rebelo, A; Cardoso, JS; Sequeira, AF;

Publicação
PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2025, PT II

Abstract
The rapid advancement of wireless technologies, particularly Wi-Fi, has spurred significant research into indoor human activity detection across various domains (e.g., healthcare, security, and industry). This work explores the non-invasive and cost-effective Wi-Fi paradigm and the application of deep learning for human activity recognition using Wi-Fi signals. Focusing on the challenges in machine interpretability, motivated by the increase in data availability and computational power, this paper uses explainable artificial intelligence to understand the inner workings of transformer-based deep neural networks designed to estimate human pose (i.e., human skeleton key points) from Wi-Fi channel state information. Using different strategies to assess the most relevant sub-carriers (i.e., rollout attention and masking attention) for the model predictions, we evaluate the performance of the model when it uses a given number of sub-carriers as input, selected randomly or by ascending (high-attention) or descending (low-attention) order. We concluded that the models trained with fewer (but relevant) sub-carriers are competitive with the baseline (trained with all sub-carriers) but better in terms of computational efficiency (i.e., processing more data per second).

2026

A federated Artificial Intelligence testing and experimentation facility for the European energy sector

Autores
Sarmas, E; Lucas, A; Acosta, AF; Ponci, F; Rodriguez, P; Marinakis, V;

Publicação
Engineering Applications of Artificial Intelligence

Abstract
The application of Artificial Intelligence (AI) in the energy sector offers new opportunities for developing flexible, efficient, and sustainable infrastructures. Nevertheless, real-world deployment is still constrained by the lack of large-scale, integrated environments that can evaluate advanced algorithms under realistic operating conditions while ensuring regulatory compliance. This paper presents EnerTEF (which stands for Energy Testing and Experimentation Facility), a federated platform for testing and experimentation in the energy sector designed to address this gap. We introduce a unified TEF architecture that enables full-stack evaluation of intelligent systems, including predictive modeling, optimization, learning under data distribution shifts and federated learning across geographically distributed sites. The framework integrates high-fidelity digital twins, a privacy-preserving data exchange framework and regulatory sandboxing to support transparent, explainable and robust AI development. EnerTEF demonstrates how such a framework can be deployed in critical energy domains through three real-world scenarios including short-term hydropower generation forecasting, coordination between distribution network operators and distributed energy resources and real-time optimization of self-consumption for municipal buildings. Results show that EnerTEF effectively enables the development of novel AI models, improves cross-context generalizability and supports innovation for complex energy infrastructures, ultimately creating a practical, scalable path for addressing different energy-related problems and heterogeneous data. © 2025 The Authors.

  • 2
  • 4312