Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Rúben Queirós concluiu em 2020 o Mestrado em Engenharia Electrotécnica e de Computadores na Faculdade de Engenharia da Universidade do Porto, Portugal. Atualmente é doutorando no Programa Doutoral de Engenharia Eletrotécnica e de Computadores, na mesma instituição. É Investigador Auxiliar no INESC TEC desde 2020, na área de Redes Sem Fios (WiN). Participou no projeto SMART open call e no projeto de investigação da UE InterConnect. Os seus interesses de investigação incluem Wi-Fi, Adaptação de Débito, Reinforcement Learning e Redes Voadoras.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Rúben Miguel Queirós
  • Cargo

    Assistente de Investigação
  • Desde

    21 fevereiro 2020
001
Publicações

2025

A Framework Leveraging Large Language Models for Autonomous UAV Control in Flying Networks

Autores
Nunes, D; Amorim, R; Ribeiro, P; Coelho, A; Campos, R;

Publicação
2025 IEEE INTERNATIONAL MEDITERRANEAN CONFERENCE ON COMMUNICATIONS AND NETWORKING, MEDITCOM

Abstract
This paper proposes FLUC, a modular framework that integrates open-source Large Language Models (LLMs) with Unmanned Aerial Vehicle (UAV) autopilot systems to enable autonomous control in Flying Networks (FNs). FLUC translates high-level natural language commands into executable UAV mission code, bridging the gap between operator intent and UAV behaviour. FLUC is evaluated using three open-source LLMs - Qwen 2.5, Gemma 2, and LLaMA 3.2 - across scenarios involving code generation and mission planning. Results show that Qwen 2.5 excels in multi-step reasoning, Gemma 2 balances accuracy and latency, and LLaMA 3.2 offers faster responses with lower logical coherence. A case study on energy-aware UAV positioning confirms FLUC's ability to interpret structured prompts and autonomously execute domain-specific logic, showing its effectiveness in real-time, mission-driven control.

2025

Context-Aware Rate Adaptation for Predictable Flying Networks using Contextual Bandits

Autores
Queiros, R; Kaneko, M; Fontes, H; Campos, R;

Publicação
IEEE Networking Letters

Abstract
The increasing complexity of wireless technologies, such as Wi-Fi, presents significant challenges for Rate Adaptation (RA) due to the large configuration space of transmission parameters. While extensive research has been conducted on RA for low-mobility networks, existing solutions fail to adapt in Flying Networks (FNs), where high mobility and dynamic wireless conditions introduce additional uncertainty. We propose Linear Upper Confidence Bound for RA (LinRA), a novel Contextual Bandit-based approach that leverages real-Time link context to optimize transmission rates in predictable FNs, where future trajectories are known. Simulation results demonstrate that LinRA converges 5.2× faster than benchmarks and improves throughput by 80% in Non Line-of-Sight conditions, matching the performance of ideal algorithms. © 2025 Elsevier B.V., All rights reserved.

2025

Context-aware Rate Adaptation for Predictive Flying Networks using Contextual Bandits

Autores
Queirós, R; Kaneko, M; Fontes, H; Campos, R;

Publicação
CoRR

Abstract

2024

Joint Channel Bandwidth Assignment and Relay Positioning for Predictive Flying Networks

Autores
Queirós, R; Kaneko, M; Fontes, H; Campos, R;

Publicação
IEEE Globecom Workshops 2024, Cape Town, South Africa, December 8-12, 2024

Abstract

2024

Trajectory-Aware Rate Adaptation for Flying Networks

Autores
Queiros, R; Ruela, J; Fontes, H; Campos, R;

Publicação
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST

Abstract
Despite the trend towards ubiquitous wireless connectivity, there are scenarios where the communications infrastructure is damaged and wireless coverage is insufficient or does not exist, such as in natural disasters and temporary crowded events. Flying networks, composed of Unmanned Aerial Vehicles (UAV), have emerged as a flexible and cost-effective solution to provide on-demand wireless connectivity in these scenarios. UAVs have the capability to operate virtually everywhere, and the growing payload capacity makes them suitable platforms to carry wireless communications hardware. The state of the art in the field of flying networks is mainly focused on the optimal positioning of the flying nodes, while the wireless link parameters are configured with default values. On the other hand, current link adaptation algorithms are mainly targeting fixed or low mobility scenarios. We propose a novel rate adaptation approach for flying networks, named Trajectory Aware Rate Adaptation (TARA), which leverages the knowledge of flying nodes’ movement to predict future channel conditions and perform rate adaptation accordingly. Simulation results of 100 different trajectories show that our solution increases throughput by up to 53% and achieves an average improvement of 14%, when compared with conventional rate adaptation algorithms such as Minstrel-HT. © ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2024.