Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Manuel F. Silva nasceu a 11 de abril de 1970. Obteve os graus de Licenciado, Mestre e Doutor em Engenharia Eletrotécnica e de Computadores pela Faculdade de Engenharia da Universidade do Porto, em 1993, 1997 e 2005, respetivamente. Atualmente é Professor Coordenador no Departamento de Engenharia Eletrotécnica do Instituto Superior de Engenharia do Porto e Investigador Principal do Centro de Robótica na Indústria e Sistemas Inteligentes do INESC TEC. É autor de mais de 150 publicações em revistas e conferências internacionais e tem estado envolvido em vários projetos de I&D. Também tem estado ativamente envolvido na organização de várias conferências internacionais, integra a equipa de gestão da Associação CLAWAR e foi Presidente da Sociedade Portuguesa de Robótica. Os seus interesses de investigação centram-se em modelação, simulação, robótica industrial, robótica móvel, robótica de inspiração biológica e educação em engenharia.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Manuel Santos Silva
  • Cargo

    Coordenador de Centro
  • Desde

    03 janeiro 2012
026
Publicações

2026

Active learning for industrial defect detection: a study on hybrid sampling strategies

Autores
Garcia Gonzalez, D; Nascimento, R; D. Rocha, C; F. Silva, M; Filipe, V; F. Rocha, L; Gonzaga Magalhães, L; Cunha, A;

Publicação
The International Journal of Advanced Manufacturing Technology

Abstract

2026

AI Enabled Robotic Loco-Manipulation

Autores
Li, Q; Xie, M; Tokhi, MO; Silva, MF;

Publicação
Lecture Notes in Networks and Systems

Abstract

2026

Crisis or Redemption with AI and Robotics? The Dawn of a New Era

Autores
Silva, MF; Tokhi, MO; Ferreira, MIA; Malheiro, B; Guedes, P; Ferreira, P; Costa, MT;

Publicação
Lecture Notes in Networks and Systems

Abstract

2026

Mapping Ethics in EPS@ISEP Robotics Projects

Autores
Malheiro, B; Guedes, P; F Silva, MF; Ferreira, PD;

Publicação
Lecture Notes in Networks and Systems

Abstract
The European Project Semester (EPS), offered by the Instituto Superior de Engenharia do Porto (ISEP), is a capstone programme designed for undergraduate students in engineering, product design, and business. EPS@ISEP fosters project-based learning, promotes multicultural and interdisciplinary teamwork, and ethics- and sustainability-driven design. This study applies Natural Language Processing techniques, specifically text mining, to analyse project papers produced by EPS@ISEP teams. The proposed method aims to identify evidence of ethical concerns within EPS@ISEP projects. An innovative keyword mapping approach is introduced that first defines and refines a list of ethics-related keywords through prompt engineering. This enriched list of keywords is then used to systematically map the content of project papers. The findings indicate that the EPS@ISEP robotics project papers analysed demonstrate awareness of ethical considerations and actively incorporate them into design processes. The method presented is adaptable to various application areas, such as monitoring compliance with responsible innovation or sustainability policies. © 2025 Elsevier B.V., All rights reserved.

2025

Reinforcement learning for hexapod robot trajectory control: a study of Q-learning and SARSA algorithms

Autores
Benyoucef, A; Zennir, Y; Belatreche, A; Silva, MF; Benghanem, M;

Publicação
INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS

Abstract
Hexapod robots, with their six-legged design, excel in stability and adaptability on challenging terrain but pose significant control challenges due to their high degrees of freedom. While reinforcement learning (RL) has been explored for robot navigation, few studies have systematically compared on-policy and off-policy methods for multi-legged locomotion. This work presents a comparative study of SARSA and Q-Learning for trajectory control of a simulated hexapod robot, focusing on the influence of learning rate (alpha), discount factor (gamma), and eligibility trace (lambda). The evaluation spans eight initial poses, with performance measured through lateral deviation (Ey), orientation error (E theta), and iteration count. Results show that Q-Learning generally achieves faster convergence and greater stability, particularly with higher gamma and lambda values, while SARSA can achieve competitive accuracy with careful parameter tuning. The findings demonstrate that eligibility traces substantially improve learning precision and provide practical guidelines for robust RL-based control in multi-legged robotic systems.