Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Sou professor no Departamento de Informática da Universidade do Minho e investigador do HASLab / INESC TEC. Também sou membro do IFIP WG 2.1 (Algorithmic Languages and Calculi) e da Associação Formal Methods Europe (FME). Faço parte do conselho editorial da revista Formal Aspects of Computing da Springer.

Meus interesses de investigação estão focados em métodos formais, álgebra de programação (cálculo de programas) e programação funcional. Publiquei recentemente sobre álgebra de relações e sua aplicação à programação. Atualmente, estou a desenvolver uma álgebra linear de programação que quero aplicar à verificação de sistemas de software complexos tolerantes a falhas.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    José Nuno Oliveira
  • Cargo

    Investigador Coordenador
  • Desde

    01 novembro 2011
005
Publicações

2026

On Quantitative Solution Iteration in QAlloy

Autores
Silva, P; Macedo, N; Oliveira, JN;

Publicação
RIGOROUS STATE-BASED METHODS, ABZ 2025

Abstract
A key feature of model finding techniques allows users to enumerate and explore alternative solutions. However, it is challenging to guarantee that the generated instances are relevant to the user, representing effectively different scenarios. This challenge is exacerbated in quantitative modelling, where one must consider both the qualitative, structural part of a model, and the quantitative data on top of it. This results in a search space of possibly infinite candidate solutions, often infinitesimally similar to one another. Thus, research on instance enumeration in qualitative model finding is not directly applicable to the quantitative context, which requires more sophisticated methods to navigate the solution space effectively. The main goal of this paper is to explore a generic approach for navigating quantitative solution spaces and showcase different iteration operations, aiming to generate instances that differ considerably from those previously seen and promote a larger coverage of the search space. Such operations are implemented in QAlloy - a quantitative extension to Alloy - on top of Max-SMT solvers, and are evaluated against several examples ranging, in particular, over the integer and fuzzy domains.

2025

Introduction to the Special Collection from FACS 2022

Autores
Tarifa, SLT; Proenca, J; Oliveira, J;

Publicação
FORMAL ASPECTS OF COMPUTING

Abstract

2025

How much is in a square? Calculating functional programs with squares

Autores
Oliveira, JN;

Publicação
JOURNAL OF FUNCTIONAL PROGRAMMING

Abstract
Experience in teaching functional programming (FP) on a relational basis has led the author to focus on a graphical style of expression and reasoning in which a geometric construct shines: the (semi) commutative square. In the classroom this is termed the magic square (MS), since virtually everything that we do in logic, FP, database modeling, formal semantics and so on fits in some MS geometry. The sides of each magic square are binary relations and the square itself is a comparison of two paths, each involving two sides. MSs compose and have a number of useful properties. Among several examples given in the paper ranging over different application domains, free-theorem MSs are shown to be particularly elegant and productive. Helped by a little bit of Galois connections, a generic, induction-free theory for ${\mathsf{foldr}}$ and $\mathsf{foldl}$ is given, showing in particular that ${\mathsf{foldl} \, {{s}}{}\mathrel{=}\mathsf{foldr}{({flip} \unicode{x005F}{s})}{}}$ holds under conditions milder than usually advocated.

2025

Logic and Calculi for All on the occasion of Luis Barbosa's 60th birthday

Autores
Madeira, A; Oliveira, JN; Proença, J; Neves, R;

Publicação
JOURNAL OF LOGICAL AND ALGEBRAIC METHODS IN PROGRAMMING

Abstract
[No abstract available]

2024

On the Relational Basis of Early R/G Work

Autores
Oliveira, N;

Publicação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract
The R/G approach to the development of interfering programs was initiated by the pioneering work of Cliff Jones (1981) on a relational basis. R/G has been the subject of much research since then, most of it deviating from the original relational set-up. This paper looks at such early work from a historical perspective and shows how it can be approached and extended using state-of-the-art relational algebra. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.