Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

João Pascoal Faria tem um doutoramento em Engenharia Electrotécnica e de Computadores pela Faculdade de Engenharia da Universidade do Porto em 1999, onde é atualmente Professor Associado no Departamento de Engenharia Informática e Diretor do Mestrado Integrado em Engenharia Informática e Computação. É membro do Grupo de Investigação em Engenharia de Software (softeng.fe.up.pt) e investigador do INESC TEC, onde coordena a área de Engenharia de Software. Representa a FEUP e o INESC TEC na Comissão Técnica de Sistemas de Informação para a Saúde (CT 199) e a FEUP como Presidente da Comissão Setorial para a Qualidade das Tecnologia da Informação e das Comunicações (CS/03), no âmbito do Instituto Português da Qualidade (IPQ). No passado, trabalhou com várias empresas de software (Novabase Saúde, Sidereus, Medidata) e foi co-fundador de outras duas (QualiSoft e Strongstep). Tem mais de 25 anos de experiência em ensino, investigação, desenvolvimento e consultoria em diversas áreas de engenharia de software. É o principal autor de uma ferramenta de desenvolvimento rápido de aplicações (SAGA), com base em linguagens específicas de domínio, com mais de 25 anos de presença no mercado e evolução (1989-presente). Está atualmente envolvido em projectos de investigação, supervisões e atividades de consultoria nas áreas de teste de software baseado em modelos, melhoria de processos de software e desenvolvimento conduzido por modelos.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    João Pascoal Faria
  • Cargo

    Investigador Coordenador
  • Desde

    14 outubro 1985
001
Publicações

2025

LLM Prompt Engineering for Automated White-Box Integration Test Generation in REST APIs

Autores
Rincon, AM; Rizzo Vincenzi, AM; Faria, JP;

Publicação
IEEE International Conference on Software Testing, Verification and Validation, ICST 2025 - Workshops, Naples, Italy, March 31 - April 4, 2025

Abstract
This study explores prompt engineering for automated white-box integration testing of RESTful APIs using Large Language Models (LLMs). Four versions of prompts were designed and tested across three OpenAI models (GPT-3.5 Turbo, GPT-4 Turbo, and GPT-4o) to assess their impact on code coverage, token consumption, execution time, and financial cost. The results indicate that different prompt versions, especially with more advanced models, achieved up to 90% coverage, although at higher costs. Additionally, combining test sets from different models increased coverage, reaching 96% in some cases. We also compared the results with EvoMaster, a specialized tool for generating tests for REST APIs, where LLM-generated tests achieved comparable or higher coverage in the benchmark projects. Despite higher execution costs, LLMs demonstrated superior adaptability and flexibility in test generation. © 2025 IEEE.

2025

Automated Social Media Feedback Analysis for Software Requirements Elicitation: A Case Study in the Streaming Industry

Autores
Silva, M; Faria, JP;

Publicação
Proceedings of the 20th International Conference on Evaluation of Novel Approaches to Software Engineering, ENASE 2025, Porto, Portugal, April 4-6, 2025.

Abstract

2025

Automatic Generation of Loop Invariants in Dafny with Large Language Models

Autores
Faria, JP; Trigo, E; Abreu, R;

Publicação
Fundamentals of Software Engineering - 11th IFIP WG 2.2 International Conference, FSEN 2025, Västerås, Sweden, April 7-8, 2025, Proceedings

Abstract
Recent verification tools aim to make formal verification more accessible for software engineers by automating most of the verification process. However, the manual work and expertise required to write verification helper code, such as loop invariants and auxiliary lemmas and assertions, remains a barrier. This paper explores the use of Large Language Models (LLMs) to automate the generation of loop invariants for programs in Dafny. We tested the approach on a curated dataset of 100 programs in Dafny involving arrays, strings, and numeric types. Using a multimodel approach that combines GPT-4o and Claude 3.5 Sonnet, correct loop invariants (passing the Dafny verifier) were generated at the first attempt for 92% of the programs, and in at most five attempts for 95% of the programs. Additionally, we developed an extension to the Dafny plugin for Visual Studio Code to incorporate automatic loop invariant generation into the IDE. Our work stands out from related approaches by handling a broader class of problems and offering IDE integration. © IFIP International Federation for Information Processing 2025.

2024

Report from the 14th International Workshop on Automating Test Case Design, Selection, and Evaluation (A-TEST 2023)

Autores
Faria, JP; Verbeek, F; Fasolino, AR;

Publicação
ACM SIGSOFT Softw. Eng. Notes

Abstract

2024

Quality of Information and Communications Technology - 17th International Conference on the Quality of Information and Communications Technology, QUATIC 2024, Pisa, Italy, September 11-13, 2024, Proceedings

Autores
Bertolino, A; Faria, JP; Lago, P; Semini, L;

Publicação
QUATIC

Abstract

Teses
supervisionadas

2023

Task Prediction and Planning Tool for Complex Engineering Tasks

Autor
Afonso Maria Rebordão Caiado de Sousa

Instituição
UP-FEUP

2023

Assessing Accuracy of Low Cost Sensors in Sign Language Recognition

Autor
Daniel Lima Fernandes Vieira

Instituição
UP-FEUP

2023

Adoption of a BDD Framework and its Guidelines

Autor
João Renato da Costa Pinto

Instituição
UP-FEUP

2022

A Pattern-based Test Platform for IoT and eHealth

Autor
Pedro José Brandão Almeida

Instituição
UP-FEUP

2022

Increasing the Dependability of Internet-of-Things Systems in the context of End-User Development Environments

Autor
João Pedro Matos Teixeira Dias

Instituição
UP-FEUP