Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

João M. P. Cardoso obteve o grau de Doutor em Engenharia Electrotécnica e Computadores no IST/UTL (Instituto Superior Técnico/Universidade Técnica de Lisboa), Lisboa, Portugal, em 2001. É actualmente Professor Catedrático no Departamento de Engenharia Informática (DEI) da Faculdade de Engenharia da Universidade do Porto (FEUP) e investigador sénior no INESC TEC. Previamente, ele foi Prof. Auxiliar no IST/UTL (2006-2008), investigador sénior no INESC-ID (2001-2009), e Prof. Auxiliar na Universidade do Algarve (1993-2006). Em 2001/2002, trabalhou na PACT XPP Technologies, Inc., em Munique, Alemanha. Tem estado envolvido na organização e tem servido como membro do comité científico de muitas conferências internacionais. Por exemplo, foi General Co-Chair da IEEE/IFIP EUC’2015 e da IEEE CSE’2015, General Chair da FPL’2013, General Co-Chair da ARC’2014 e ARC’2006, Program Co-Chair da ARCS’2016, DASIP’2014, e RAW’2010. É co-autor de mais de 150 publicações científicas em tópicos relacionados com compiladores, sistemas embebidos, e computação reconfigurável. Coordenou vários projectos de investigação. É um membro sénior do IEEE e do ACM e membro da IEEE Computer Society. Os seus interesses de investigação incluem técnicas de compiladores, linguages específicas ao domínio, computação reconfigurável, arquitecturas específicas à aplicação, e computação de elevado desempenho com ênfase em computação embebida.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    João Paiva Cardoso
  • Cargo

    Investigador Sénior
  • Desde

    01 julho 2011
003
Publicações

2025

On improving the HLS compatibility of large C/C plus plus code regions

Autores
Santos, T; Bispo, J; Cardoso, JMP; Hoe, JC;

Publicação
2025 IEEE 33RD ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, FCCM

Abstract
Heterogeneous CPU-FPGA C/C++ applications may rely on High-level Synthesis (HLS) tools to generate hardware for critical code regions. As typical HLS tools have several restrictions in terms of supported language features, to increase the size and variety of offloaded regions, we propose several code transformations to improve synthesizability. Such code transformations include: struct and array flattening; moving dynamic memory allocations out of a region; transforming dynamic memory allocations into static; and asynchronously executing host functions, e.g., printf(). We evaluate the impact of these transformations on code region size using three realworld applications whose critical regions are limited by nonsynthesizable C/C++ language features.

2025

Ph.D. Project: Holistic Partitioning and Optimization of CPU-FPGA Applications Through Source-to-Source Compilation

Autores
Santos, T; Bispo, J; Cardoso, JMP;

Publicação
2025 IEEE 33RD ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, FCCM

Abstract
Critical performance regions of software applications are often accelerated by offloading them onto an FPGA. An efficient end result requires the judicious application of two processes: hardware/software (hw/sw) partitioning, which identifies the regions for offloading, and the optimization of those regions for efficient High-level Synthesis (HLS). Both processes are commonly applied separately, not relying on any potential interplay between them, and not revealing how the decisions made in one process could positively influence the other. This paper describes our primary efforts and contributions made so far, and our work-in-progress, in an approach that combines both hw/sw partitioning and optimization into a unified, holistic process, automated using source-to-source compilation. By using an Extended Task Graph (ETG) representation of a C/C++ application, and expanding the synthesizable code regions, our approach aims at creating clusters of tasks for offloading by a) maximizing the potential optimizations applied to the cluster, b) minimizing the global communication cost, and c) grouping tasks that share data in the same cluster.

2025

First Twenty Years of the International Symposium on Applied Reconfigurable Computing (ARC): A Selection of Papers

Autores
Cardoso, JMP; Najjar, WA;

Publicação
Applied Reconfigurable Computing. Architectures, Tools, and Applications - 21st International Symposium, ARC 2025, Seville, Spain, April 9-11, 2025, Proceedings

Abstract
The International Symposium on Applied Reconfigurable Computing (ARC) is an annual forum for the discussion and dissemination of research, notably applying the Reconfigurable Computing (RC) concept to real-world problems. The first edition of ARC took place in 2005, and in 2024, ARC celebrated its 20th edition. During those 20 years, the field of reconfigurable computing saw a tremendous growth in its underlying technology. ARC contributed very significantly to the presentation and dissemination of new ideas, innovative applications, and fruitful discussions, all of which have resulted in the shaping of novel lines of research. Here, we present selected papers from the first 20 years of ARC, that we believe represent the corpus of work and reflect the ARC spirit by covering a broad spectrum of RC applications, benchmarks, tools, and architectures. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2024

A Fast and Energy-Efficient Method for Online and Incremental Pareto-Front Update

Autores
Ferreira, PJS; Moreira, JM; Cardoso, JMP;

Publicação
10th IEEE World Forum on Internet of Things, WF-IoT 2024, Ottawa, ON, Canada, November 10-13, 2024

Abstract
Self-adaptive Systems (SaS) are becoming increasingly important for adapting to dynamic environments and for optimizing performance on resource-constrained devices. A practical approach to achieving self-adaptability involves using a Pareto-Front (PF) to store the system's hyper-parameters and the outcomes of hyperparameter combinations. This paper proposes a novel method to approximate a PF, offering a configurable number of solutions that can be adapted to the device's limitations. We conducted extensive experiments across various scenarios, where all PF solutions were replaced, and real world scenarios were performed using actual measurements from a Human Activity Recognition (HAR) system. Our results show that our method consistently outperforms previous methods, mainly when the maximum number of PF solutions is in the order of hundreds. The effectiveness of our method is most apparent in real-case scenarios where it achieves, when executed in a Raspberry Pi 5, up to 87% energy consumption reduction and lower execution times than the second-best algorithm. Additionally, our method ensures a more evenly distributed solution across the PF, preventing the high concentration of solutions. © 2024 IEEE.

2024

Proceedings of the 14th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies, HEART 2024, Porto, Portugal, June 19-21, 2024

Autores
Josipovic, L; Zhou, P; Shanker, S; Cardoso, JMP; Anderson, J; Yuichiro, S;

Publicação
HEART

Abstract