Detalhes
Nome
Francesco RennaDesde
01 junho 2020
Nacionalidade
ItáliaContactos
+351222094000
francesco.renna@inesctec.pt
2025
Autores
Antonelli, G; Libanio, D; De Groof, AJ; van der Sommen, F; Mascagni, P; Sinonquel, P; Abdelrahim, M; Ahmad, O; Berzin, T; Bhandari, P; Bretthauer, M; Coimbra, M; Dekker, E; Ebigbo, A; Eelbode, T; Frazzoni, L; Gross, SA; Ishihara, R; Kaminski, MF; Messmann, H; Mori, Y; Padoy, N; Parasa, S; Pilonis, ND; Renna, F; Repici, A; Simsek, C; Spadaccini, M; Bisschops, R; Bergman, JJGHM; Hassan, C; Ribeiro, MD;
Publicação
GUT
Abstract
Artificial intelligence (AI) holds significant potential for enhancing quality of gastrointestinal (GI) endoscopy, but the adoption of AI in clinical practice is hampered by the lack of rigorous standardisation and development methodology ensuring generalisability. The aim of the Quality Assessment of pre-clinical AI studies in Diagnostic Endoscopy (QUAIDE) Explanation and Checklist was to develop recommendations for standardised design and reporting of preclinical AI studies in GI endoscopy. The recommendations were developed based on a formal consensus approach with an international multidisciplinary panel of 32 experts among endoscopists and computer scientists. The Delphi methodology was employed to achieve consensus on statements, with a predetermined threshold of 80% agreement. A maximum three rounds of voting were permitted. Consensus was reached on 18 key recommendations, covering 6 key domains: data acquisition and annotation (6 statements), outcome reporting (3 statements), experimental setup and algorithm architecture (4 statements) and result presentation and interpretation (5 statements). QUAIDE provides recommendations on how to properly design (1. Methods, statements 1-14), present results (2. Results, statements 15-16) and integrate and interpret the obtained results (3. Discussion, statements 17-18). The QUAIDE framework offers practical guidance for authors, readers, editors and reviewers involved in AI preclinical studies in GI endoscopy, aiming at improving design and reporting, thereby promoting research standardisation and accelerating the translation of AI innovations into clinical practice.
2025
Autores
Gaudio, A; Giordano, N; Elhilali, M; Schmidt, S; Renna, F;
Publicação
IEEE Transactions on Biomedical Engineering
Abstract
The detection of Pulmonary Hypertension (PH) from the computer analysis of digitized heart sounds is a low-cost and non-invasive solution for early PH detection and screening. We present an extensive cross-domain evaluation methodology with varying animals (humans and porcine animals) and varying auscultation technologies (phonocardiography and seisomocardiography) evaluated across four methods. We introduce PH-ELM, a resource-efficient PH detection model based on the extreme learning machine that is smaller (300× fewer parameters), energy efficient (532× fewer watts of power), faster (36× faster to train, 44× faster at inference), and more accurate on out-of-distribution testing (improves median accuracy by 0.09 area under the ROC curve (auROC)) in comparison to a previously best performing deep network. We make four observations from our analysis: (a) digital auscultation is a promising technology for the detection of pulmonary hypertension; (b) seismocardiography (SCG) signals and phonocardiography (PCG) signals are interchangeable to train PH detectors; (c) porcine heart sounds in the training data can be used to evaluate PH from human heart sounds (the PH-ELM model preserves 88 to 95% of the best in-distribution baseline performance); (d) predictive performance of PH detection can be mostly preserved with as few as 10 heartbeats and capturing up to approximately 200 heartbeats per subject can improve performance. © 1964-2012 IEEE.
2024
Autores
Renna, F; Gaudio, A; Mattos, S; Plumbley, MD; Coimbra, MT;
Publicação
IEEE ACCESS
Abstract
An algorithm for blind source separation (BSS) of the second heart sound (S2) into aortic and pulmonary components is proposed. It recovers aortic (A2) and pulmonary (P2) waveforms, as well as their relative delays, by solving an alternating optimization problem on the set of S2 sounds, without the use of auxiliary ECG or respiration phase measurement data. This unsupervised and data-driven approach assumes that the A2 and P2 components maintain the same waveform across heartbeats and that the relative delay between onset of the components varies according to respiration phase. The proposed approach is applied to synthetic heart sounds and to real-world heart sounds from 43 patients. It improves over two state-of-the-art BSS approaches by 10% normalized root mean-squared error in the reconstruction of aortic and pulmonary components using synthetic heart sounds, demonstrates robustness to noise, and recovery of splitting delays. The detection of pulmonary hypertension (PH) in a Brazilian population is demonstrated by training a classifier on three scalar features from the recovered A2 and P2 waveforms, and this yields an auROC of 0.76.
2024
Autores
Ferreira V.R.S.; de Paiva A.C.; Silva A.C.; de Almeida J.D.S.; Junior G.B.; Renna F.;
Publicação
International Conference on Enterprise Information Systems, ICEIS - Proceedings
Abstract
This work proposes the use of a deep learning-based adversarial diffusion model to address the translation of contrast-enhanced from non-contrast-enhanced computed tomography (CT) images of the heart. The study overcomes challenges in medical image translation by combining concepts from generative adversarial networks (GANs) and diffusion models. Results were evaluated using the Peak signal to noise ratio (PSNR) and structural index similarity (SSIM) to demonstrate the model's effectiveness in generating contrast images while preserving quality and visual similarity. Despite successes, Root Mean Square Error (RMSE) analysis indicates persistent challenges, highlighting the need for continuous improvements. The intersection of GANs and diffusion models promises future advancements, significantly contributing to clinical practice. The table compares CyTran, CycleGAN, and Pix2Pix networks with the proposed model, indicating directions for improvement.
2024
Autores
Santos, R; Baeza, R; Filipe, VM; Renna, F; Paredes, H; Pedrosa, J;
Publicação
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024
Abstract
Coronary artery calcium is a good indicator of coronary artery disease and can be used for cardiovascular risk stratification. Over the years, different deep learning approaches have been proposed to automatically segment coronary calcifications in computed tomography scans and measure their extent through calcium scores. However, most methodologies have focused on using 2D architectures which neglect most of the information present in those scans. In this work, we use a 3D convolutional neural network capable of leveraging the 3D nature of computed tomography scans and including more context in the segmentation process. In addition, the selected network is lightweight, which means that we can have 3D convolutions while having low memory requirements. Our results show that the predictions of the model, trained on the COCA dataset, are close to the ground truth for the majority of the patients in the test set obtaining a Dice score of 0.90 +/- 0.16 and a Cohen's linearly weighted kappa of 0.88 in Agatston score risk categorization. In conclusion, our approach shows promise in the tasks of segmenting coronary artery calcifications and predicting calcium scores with the objectives of optimizing clinical workflow and performing cardiovascular risk stratification.
Teses supervisionadas
2023
Autor
Rafael de Faria Campos
Instituição
UP-FCUP
2023
Autor
Miguel Lopes Martins
Instituição
UP-FCUP
2023
Autor
Hélder Miguel Carvalho Vieira
Instituição
UP-FCUP
2023
Autor
Maria Pedroso da Silva
Instituição
UP-FCUP
2022
Autor
Rúben André Dias Domingues
Instituição
UP-FCUP
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.