Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Fábio Sester Retorta é engenheiro eletricista formado na Universidade Federal do Paraná (UFPR). Durante seu tempo no Brasil, trabalhou durante 3 anos com projetos P&D ANEEL e serviços na área de qualidade de energia elétrica pela empresa Lactec. Fábio fez seu mestrado na UFPR com tema de um projeto P&D ANEEL sendo premiado como 1 lugar no CIGRE Showcase Paris 2018. Desde 2015 o pequisador vem contribuindo com publicações em eventos internacionais, capítulos de livros e periódicos brasileiros. O pesquisador tem trabalhado com os temas: qualidade de energia elétrica de parques eólicos/GD, operação da geração distribuída, sistemas de armazenamento, energia termossolar (CSP), eletrificação rural, metodologias multicritério, sistemas fuzzy, operação de sistemas elétricos, OPF, métodos de otimização, métodos de previsão e planejamento de sistemas de distribuição. Fábio ja ministrou aulas no SENAI e CEPS (escolas técnicas no Brasil) e é membro do grupo C6 do CIGRÉ. Atualmente tabalha no CPES com temas relacionados com energy markets, deregulated electricyty markets, flexibilities in electricity markets, OPF e optimization methods.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Fábio Retorta
  • Cargo

    Assistente de Investigação
  • Desde

    18 fevereiro 2019
004
Publicações

2025

Local flexibility markets based on grid segmentation

Autores
Retorta, F; Mello, J; Gouveia, C; Silva, B; Villar, J; Troncia, M; Chaves Avila, JP;

Publicação
UTILITIES POLICY

Abstract
Local flexibility markets are a promising solution to aid system operators in managing the network as it faces the growth of distributed resources and the resulting impacts on voltage control, among other factors. This paper presents and simulates a proposal for an intra-day local flexibility market based on grid segmentation. The design provides a market-based solution for distribution system operators (DSOs) to address near-real-time grid issues. The grid segmentation computes the virtual buses that represent each zone and the sensitivity indices that approximate the impact of activating active power flexibility in the buses within the zone. This approach allows DSOs to manage and publish their flexibility needs per zone and enables aggregators to offer flexibility by optimizing their resource portfolios per zone. The simulation outcomes allow for the assessment of market performance according to the number of zones computed and show that addressing overloading and voltage control through zonal approaches can be cost-effective and counterbalance minor errors compared to node-based approaches.

2024

Review of commercial flexibility products and market platforms

Autores
Rodrigues, L; Ganesan, K; Retorta, F; Coelho, F; Mello, J; Villar, J; Bessa, R;

Publicação
2024 20TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM 2024

Abstract
The European Union is pushing its members states to implement regulations that incentivize distribution system operators to procure flexibility to enhance grid operation and planning. Since flexibility should be obtained using market-based solutions, when possible, flexibility market platforms become essential tools to harness consumer-side flexibility, supporting its procurement, trading, dispatch, and settlement. These reasons have led to the appearance of multiple flexibility market platforms with different structure and functionalities. This work provides a comprehensive description of the main flexibility platforms operating in Europe and provides a concise review of the platform main characteristics and functionalities, including their user segment, flexibility trading procedures, settlement processes, and flexibility products supported.

2023

A Data-Driven Approach to Estimate the Flexibility Maps in Multiple TSO-DSO Connections

Autores
Silva, J; Sumaili, J; Silva, B; Carvalho, L; Retorta, F; Staudt, M; Miranda, V;

Publicação
IEEE TRANSACTIONS ON POWER SYSTEMS

Abstract
This paper presents a methodology to estimate flexibility existing on TSO-DSO borderline, for the cases where multiple TSO-DSO connections exist (meshed grids). To do so, the work conducted exploits previous developments regarding flexibility representation through the adoption of active and reactive power flexibility maps and extends the concept for the cases where multiple TSO-DSO connection exists, using data-driven approach to determine the equivalent impedance between TSO nodes, preserving the anonymity regarding sensitive grid information, such as the topology. This paper also provides numerical validation followed by real-world demonstration of the methodology proposed.

2023

A Three-Stage Model to Manage Energy Communities, Share Benefits and Provide Local Grid Services

Autores
Rocha, R; Silva, R; Mello, J; Faria, S; Retorta, F; Gouveia, C; Villar, J;

Publicação
ENERGIES

Abstract
This paper proposes a three-stage model for managing energy communities for local energy sharing and providing grid flexibility services to tackle local distribution grid constraints. The first stage addresses the minimization of each prosumer's individual energy bill by optimizing the schedules of their flexible resources. The second stage optimizes the energy bill of the whole energy community by sharing the prosumers' energy surplus internally and re-dispatching their batteries, while guaranteeing that each prosumer's new energy bill is always be equal to or less than the bill that results for this prosumer from stage one. This collective optimization is designed to ensure an additional collective benefit, without loss for any community member. The third stage, which can be performed by the distribution system operator (DSO), aims to solve the local grid constraints by re-dispatching the flexible resources and, if still necessary, by curtailing local generation or consumption. Stage three minimizes the impact on the schedule obtained at previous stages by minimizing the loss of profit or utility for all prosumers, which are furthermore financially compensated accordingly. This paper describes how the settlement should be performed, including the allocation coefficients to be sent to the DSO to determine the self-consumed and supplied energies of each peer. Finally, some case studies allow an assessment of the performance of the proposed methodology. Results show, among other things, the potential benefits of allowing the allocation coefficients to take negative values to increase the retail market competition; the importance of stage one or, alternatively, the need for a fair internal price to avoid unfair collective benefit sharing among the community members; or how stage three can effectively contribute to grid constraint solving, profiting first from the existing flexible resources.

2023

Simulating a real time Walrasian local electricity market design: assessing auctioneer algorithm and price behavior

Autores
Mello, J; Retorta, F; Silva, R; Villar, J; Saraiva, JT;

Publicação
2023 19TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM

Abstract
In Walrasian markets, an auctioneer proposes a price to the market participants, who react by revealing the quantities they are willing to buy or sell at this price. The auctioneer then proposes new prices to improve the demand and supply match until the equilibrium is reached. This market, common for stock exchanges, has also been proposed for electricity markets like power electricity exchanges, where iterations among auctioneer and market participants take place before the interval settlement period (ISP) until supply and demand match and a stable price is reached. We propose a Walrasian design for local electricity markets where the iterations between auctioneer and market participants happen in real time, so previous imbalances are used to correct the proposed price for the next ISP. The designs are simulated to test convergence and their capability of achieving efficient dynamic prices.