Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

André Coelho obteve um doutoramento em Telecomunicações em 2023 e um mestrado em Engenharia Eletrotécnica e de Computadores em 2016, ambos pela Universidade do Porto, Portugal. Atualmente, é investigador no grupo de investigação de Redes Sem Fios (WiN) do Centro de Telecomunicações e Multimédia (CTM) do INESC TEC.

Desde que se juntou ao INESC TEC em 2015, André Coelho tem estado ativamente envolvido em vários projetos de investigação nacionais e europeus, incluindo NEXUS, PRODUTECH R3, Test Bed 5G & Digital Transformation, CONVERGE, OVERWATCH, ResponDrone, InterConnect, RAWFIE, WISE, 5Go e CHIC. Também fez parte da equipa de orientação de mais de 20 estudantes de mestrado e licenciatura.

Os seus interesses de investigação incluem a gestão de recursos de comunicações para garantias de Qualidade de Serviço em redes sem fios emergentes. Tem um interesse especial em redes voadoras formadas por Veículos Aéreos Não Tripulados (UAVs).

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    André Filipe Coelho
  • Cargo

    Investigador Auxiliar
  • Desde

    02 novembro 2015
009
Publicações

2025

eSUPPLY: Efficient Energy-Aware Multi-UAV Placement in Flying Networks

Autores
Ribeiro, P; Coelho, A; Campos, R;

Publicação
2025 13th Wireless Days Conference (WD)

Abstract

2025

A Framework Leveraging Large Language Models for Autonomous UAV Control in Flying Networks

Autores
Nunes, D; Amorim, R; Ribeiro, P; Coelho, A; Campos, R;

Publicação
2025 IEEE INTERNATIONAL MEDITERRANEAN CONFERENCE ON COMMUNICATIONS AND NETWORKING, MEDITCOM

Abstract
This paper proposes FLUC, a modular framework that integrates open-source Large Language Models (LLMs) with Unmanned Aerial Vehicle (UAV) autopilot systems to enable autonomous control in Flying Networks (FNs). FLUC translates high-level natural language commands into executable UAV mission code, bridging the gap between operator intent and UAV behaviour. FLUC is evaluated using three open-source LLMs - Qwen 2.5, Gemma 2, and LLaMA 3.2 - across scenarios involving code generation and mission planning. Results show that Qwen 2.5 excels in multi-step reasoning, Gemma 2 balances accuracy and latency, and LLaMA 3.2 offers faster responses with lower logical coherence. A case study on energy-aware UAV positioning confirms FLUC's ability to interpret structured prompts and autonomously execute domain-specific logic, showing its effectiveness in real-time, mission-driven control.

2025

Converge: towards an efficient multi-modal sensing research infrastructure for next-generation 6 G networks

Autores
Filipe B. Teixeira; Manuel Ricardo; André Coelho; Hélder P. Oliveira; Paula Viana; Nuno Paulino; Helder Fontes; Paulo Marques; Rui Campos; Luís Pessoa;

Publicação
EURASIP Journal on Wireless Communications and Networking

Abstract

2025

CONVERGE: A Multi-Agent Vision-Radio Architecture for xApps

Autores
Teixeira, FB; Simões, C; Fidalgo, P; Pedrosa, W; Coelho, A; Ricardo, M; Pessoa, LM;

Publicação
CoRR

Abstract

2025

On the Energy Consumption of Rotary-Wing and Fixed-Wing UAVs in Flying Networks

Autores
Ribeiro, P; Coelho, A; Campos, R;

Publicação
2025 20TH WIRELESS ON-DEMAND NETWORK SYSTEMS AND SERVICES CONFERENCE, WONS

Abstract
Unmanned Aerial Vehicles (UAVs) are increasingly employed to enable wireless communications, serving as communications nodes. In previous work, we proposed the Sustainable multi-UAV Performance-aware Placement (SUPPLY) algorithm, which focuses on the energy-efficient placement of multiple UAVs acting as Flying Access Points (FAPs). We also developed the Multi-UAV Energy Consumption (MUAVE) simulator to evaluate UAV energy consumption. However, MUAVE was designed to compute the energy consumption for rotary-wing UAVs only. In this paper, we propose eMUAVE, an enhanced version of the MUAVE simulator that enables the evaluation of the energy consumption for both rotary-wing and fixed-wing UAVs. We then use eMUAVE to evaluate the energy consumption of rotary-wing and fixed-wing UAVs in reference and random networking scenarios. The results show that rotary-wing UAVs are typically more energy-efficient than fixed-wing UAVs when following SUPPLY-defined trajectories.