Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Marcos Martins

2022

Development of an automated sensor for in-situ continuous monitoring of streambed sediment height of a waterway

Autores
Matos, T; Rocha, JL; Faria, CL; Martins, MS; Henriques, R; Goncalves, LM;

Publicação
SCIENCE OF THE TOTAL ENVIRONMENT

Abstract
The sedimentary processes play a major role in every aquatic ecosystem, however, there are few automated options for in-situ monitoring of sediment displacement in the streambed of waterways. We present an automated optical instrument for in-situ continuous monitoring of sediment deposition and erosion of the streambed that requires no calibration. With a production cost of 32euro, power consumption of 300 mu A in sleep mode, and capacity to monitor the bedform of a waterway, the sensor was developed to evaluate the sediment dynamics of coastal areas with a wide spatial and temporal resolution. The novel device is intended to be buried in the sand and uses 32 infrared channels to monitor the streambed sediment height. For testing purposes, a maximum measuring length of 160 mm and 5 mm resolution was chosen, but these values are scalable. Sensors can be built with different ranges and precision according to the needs of the fieldwork. A laboratory experiment was conducted to demonstrate the working principle of the instrument and its behaviour regarding the turbidity originated by suspended sediment and the settling and deposition of the suspended particles. The device was deployed for 119 days in an estuarine area and was able to detect patterns in the sediment deposition and resuspension during the tidal cycles. Also, abnormal events occurred during the experiment as floods and algae blooms. During these events, the sensor was able to record exceptional erosion and sediment deposition rates. The reported automated instrument can be broadly used in sedimentary studies or management and planning of fluvial and maritime infrastructures to provide real-time information about the changes in the bedform of the watersheds.

2022

Development of an Ultraviolet-C Irradiation Room in a Public Portuguese Hospital for Safe Re-Utilization of Personal Protective Respirators

Autores
Padrao, J; Nicolau, T; Felgueiras, HP; Calcada, C; Veiga, MI; Osorio, NS; Martins, MS; Dourado, N; Taveira-Gomes, A; Ferreira, F; Zille, A;

Publicação
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH

Abstract
Almost two years have passed since COVID-19 was officially declared a pandemic by the World Health Organization. However, it still holds a tight grasp on the entire human population. Several variants of concern, one after another, have spread throughout the world. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant may become the fastest spreading virus in history. Therefore, it is more than evident that the use of personal protective equipment (PPE) will continue to play a pivotal role during the current pandemic. This work depicts an integrative approach attesting to the effectiveness of ultra-violet-C (UV-C) energy density for the sterilization of personal protective equipment, in particular FFP2 respirators used by the health care staff in intensive care units. It is increasingly clear that this approach should not be limited to health care units. Due to the record-breaking spreading rates of SARS-CoV-2, it is apparent that the use of PPE, in particular masks and respirators, will remain a critical tool to mitigate future pandemics. Therefore, similar UV-C disinfecting rooms should be considered for use within institutions and companies and even incorporated within household devices to avoid PPE shortages and, most importantly, to reduce environmental burdens.

2022

Fracture characterisation of bone-cement bonded joints under mode I loading

Autores
Campos, TD; Barbosa, MLS; Olmos, AAR; Martins, M; Pereira, FAM; De Moura, MFSF; Zille, A; Dourado, N;

Publicação
THEORETICAL AND APPLIED FRACTURE MECHANICS

Abstract
Over the years, many techniques have been developed for the stabilisation of bone fractures. The study of the adhesion of bone-to-bone cement is an important step towards the development of new immobilization systems. Although bone cement has been used for more than fifty years, very few studies have been performed regarding the evaluation of fracture properties. In this work, numerical and experimental investigations were conducted to evaluate the strain energy release rate under mode I loading in a bone-cement bonded joint, using the Double Cantilever Beam (DCB) test. Cohesive zone laws were also measured combining the finite element method with non-linear elastic fracture mechanics. This has been made in a cortical bone bonded joint with polymethylmethacrylate (PMMA). Consistent results have been obtained regarding fracture toughness in a widely used bone-to-bone cement joint in many biomedical applications.

2022

A low-cost, low-power and low-size multi-parameter station for real-time and online monitoring of the coastal area

Autores
Matos, T; Rocha, JL; Dinis, H; Faria, CL; Martins, MS; Henriques, R; Goncalves, LM;

Publicação
2022 OCEANS HAMPTON ROADS

Abstract
The seashore is the front door to the oceans and the sustain of many societies. However, humans still seem to be unable to unlock new paradigms to project sustainable growth of marine and coastal ecosystems. One of the reasons for this is the lack of knowledge about the natural processes that systematically change their balance. Thus, a new generation of tools is needed to gather data to validate and predict geostatistical models and protect this important resource. This manuscript reports the design and validation of a multi-parameter marine station installed in the estuary of Cavado - Portugal. For the last two years, the station has hosted several own-developed sensors to monitor water parameters, and it was designed to send the monitoring data, in real-time, to a public website so the information can be shared with the communities. So far, the monitoring station has been able to produce data about hydraulic and environmental dynamics, such as water column height or sediment displacement, as well as seasonal events and other extreme phenomena occurrences such as floods. The proposed monitoring system, built in a low-power and low-cost philosophy, aims to allow massive replication all over the coastal areas and to deliver qualitative and quantitative data for better management and planning of the littoral.

2025

Advancing Low-Cost, Low-Power and Compact Marine Monitoring: A Dual-Node Synchronized Network in the Cavado Estuary

Autores
Matos, T; Rocha, JL; Dinis, H; Martins, MS; Goncalves, LM;

Publicação
OCEANS 2025 BREST

Abstract
Estuaries are dynamic ecosystems where freshwater and seawater interact, shaping complex hydrodynamic and environmental processes. Traditional single-node monitoring systems, while informative, lack the spatial resolution necessary to fully capture these dynamics. This study presents the development and deployment of a dual-node synchronized wireless sensor network for real-time environmental monitoring in the Cavado Estuary, Portugal. The network architecture integrates low-power embedded systems, a synchronized radiofrequency network, and a web-based data visualization platform. Two monitoring nodes, deployed 675 meters apart, operate in a synchronous cycle to measure hydrostatic pressure and water temperature, demonstrating the feasibility of synchronized environmental sensing. The collected data validated network synchronization, revealing a 30-minute delay in tidal propagation between nodes and highlighting temperature variations influenced by estuarine hydrodynamics. Additionally, long-term observations captured seasonal trends, tidal influences, and extreme weather events such as Storm Kirk. The study also evaluated the system's energy efficiency, confirming the solar panel's capacity to sustain continuous operation and estimating battery life expectancy under different network configurations. This work advances synchronized monitoring networks by providing a scalable, low-cost solution for studying marine environments. The proposed system enables more precise quantification of oceanic influences on estuarine conditions, particularly regarding tidal propagation and phase differences, supporting more effective ecosystem management and understanding.

2025

Protection of custom satellite antennas for deep-sea monitoring probes: Insights from the SONDA project

Autores
Matos, T; Dinis, H; Faria, CL; Martins, MS;

Publicação
APPLIED OCEAN RESEARCH

Abstract
This study presents the development and testing of satellite antennas for the SONDA probe, an innovative deepsea monitoring system designed to be deployed by high-altitude balloons. The probe descends to the deep ocean, resurfaces, and transmits data while functioning as a drifter. The project faced unique design constraints, including the need for low-cost materials and lightweight construction for balloon deployment. These constraints ruled out traditional hermetic housings, necessitating alternative solutions for antenna protection. The work focused on custom ceramic patch antennas and their performance under various protective coatings, which affected the antennas' resonance and gain. Thinner layers effectively protected the antennas from high-pressure conditions and water ingress, maintaining functionality. Experiments on antenna height revealed optimal positioning above the water surface to minimize wave-induced signal interference. Hyperbaric chamber tests validated the mechanical integrity and functionality of the antennas under pressures equivalent to depths of 1500 m Antenna characterization techniques were employed in an anechoic chamber to validate antenna performance with the coating and to assess their correct operation after the hyperbaric tests. Field deployments demonstrated the antennas' capability to transmit data after diving. Challenges included communication delays, corrupted data, and mechanical vulnerabilities in materials. The findings emphasize the importance of rigorous mechanical design, material selection, and system optimization to ensure reliability in marine environments. This work advances the development of low-cost, lightweight, and modular probes for autonomous ocean monitoring, with potential applications in long-term drifter studies, real-time marine monitoring and oceanographic research.

  • 2
  • 11