Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Tiago Manuel Campelos

2018

Survey on Complex Optimization and Simulation for the New Power Systems Paradigm

Autores
Soares, J; Pinto, T; Lezama, F; Morais, H;

Publicação
COMPLEXITY

Abstract
This survey provides a comprehensive analysis on recent research related to optimization and simulation in the new paradigm of power systems, which embraces the so-called smart grid. We start by providing an overview of the recent research related to smart grid optimization. From the variety of challenges that arise in a smart grid context, we analyze with a significance importance the energy resource management problem since it is seen as one of the most complex and challenging in recent research. The survey also provides a discussion on the application of computational intelligence, with a strong emphasis on evolutionary computation techniques, to solve complex problems where traditional approaches usually fail. The last part of this survey is devoted to research on large-scale simulation towards applications in electricity markets and smart grids. The survey concludes that the study of the integration of distributed renewable generation, demand response, electric vehicles, or even aggregators in the electricity market is still very poor. Besides, adequate models and tools to address uncertainty in energy scheduling solutions are crucial to deal with new resources such as electric vehicles or renewable generation. Computational intelligence can provide a significant advantage over traditional tools to address these complex problems. In addition, supercomputers or parallelism opens a window to refine the application of these new techniques. However, such technologies and approaches still need to mature to be the preferred choice in the power systems field. In summary, this survey provides a full perspective on the evolution and complexity of power systems as well as advanced computational tools, such as computational intelligence and simulation, while motivating new research avenues to cover gaps that need to be addressed in the coming years.

2017

Bilateral contract prices estimation using a Q-leaming based approach

Autores
Rodriguez-Fernandez, J; Pinto, T; Silva, F; Praca, I; Vale, Z; Corchado, JM;

Publicação
2017 IEEE Symposium Series on Computational Intelligence (SSCI)

Abstract

2019

Classification of local energy trading negotiation profiles using artificial neural networks

Autores
Pinto, A; Pinto, T; Praca, I; Vale, Z;

Publicação
IEEE Power and Energy Society General Meeting

Abstract
Electricity markets are evolving into a local trading setting, which makes it for unexperienced players to achieve good agreements and obtain profits. One of the solutions to deal with this issue is to provide players with decision support solutions capable of identifying opponents' negotiation profiles, so that negotiation strategies can be adapted to those profiles in order to reach the best possible results from negotiations. This paper presents an approach that classifies opponents' proposals during a negotiation, to determine which is the typical negotiation profile in which the opponent most relates. The classification process is performed using an artificial neural network approach, and it is able to adapt at each new proposal during the negotiation process, by re-classifying the opponents' negotiation profile according to the most recent actions. In this way, effective decision support is provided to market players, enabling them to adapt the negotiation strategy throughout the negotiations. © 2019 IEEE.

2017

EPEX Ontology: Enhancing Agent-based Electricity Market Simulation

Autores
Santos, G; Pinto, T; Praça, I; Vale, Z;

Publicação
2017 19TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEM APPLICATION TO POWER SYSTEMS (ISAP)

Abstract
Electricity markets worldwide are complex and dynamic environments with very particular characteristics. The markets' restructuring and evolution into regional and continental scales, along with the constant changes brought by the increasing necessity for an adequate integration of renewable energy sources are the main drivers. Multi-agent based software is particularly well fitted to analyse dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. This paper proposes the use of ontologies to enable the exchange of information and knowledge, to test different market models and to allow market players from different systems to interact in common market environments. Focusing, namely, on the EPEX electricity market.

2017

Reserve costs allocation model for energy and reserve market simulation

Autores
Pinto, T; Gazafroudi, AS; Prieto Castrillo, F; Santos, G; Silva, F; Corchado, JM; Vale, Z;

Publicação
2017 19th International Conference on Intelligent System Application to Power Systems, ISAP 2017

Abstract
This paper proposes a new model to allocate reserve costs among the involved players, considering the characteristics of the several entities, and the particular circumstances at each moment. The proposed model is integrated in the Multi-Agent Simulator of Competitive Electricity Markets (MASCEM), which enables complementing the multi-agent simulation of diverse electricity market models, by including the joint simulation of energy and reserve markets. In this context, the proposed model allows allocating the payment of reserve costs that result from the reserve market. A simulation based on real data from the Iberian electricity market - MIBEL, is presented. Simulation results show the advantages of the proposed model in sharing the reserve costs fairly and accordingly to the different circumstances. This work thus contributes the study of novel market models towards the evolution of power and energy systems by adapting current models to the new paradigm of high penetration of renewable energy generation. © 2017 IEEE.

2018

Day ahead electricity consumption forecasting with MOGUL learning model

Autores
Jozi, A; Pinto, T; Praça, I; Vale, Z; Soares, J;

Publicação
2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN)

Abstract
Due to amount of today's electricity consumption, one of the most important tasks of the energy operators is to be able to predict the consumption and be ready to control the energy generation based on the estimated consumption for the future. In this way, having a trustable forecast of the electricity consumption is essential to control the consumption and maintain the balance in energy distribution networks. This study presents a day ahead forecasting approach based on a genetic fuzzy system for fuzzy rule learning based on the MOGUL methodology (GFS.FR.MOGUL). The proposed approach is used to forecast the electricity consumption of an office building in the following 24 hours. The goal of this work is to present a more reliable profile of the electricity consumption comparing to previous works. Therefore, this paper also includes the comparison of the results of day ahead forecasting using GFS.FR.MOGUL method against other fuzzy rule based methods, as well as a set of Artificial Neural Network (ANN) approaches. This comparison shows that using the GFS.FR.MOGUL forecasting method for day-ahead electricity consumption forecasting is able to estimate a more trustable value than the other approaches.

  • 34
  • 64