2022
Autores
Teixeira, S; Rodrigues, J; Veloso, B; Gama, J;
Publicação
15th International Conference on Theory and Practice of Electronic Governance, ICEGOV 2022, Guimarães, Portugal, October 4-7, 2022
Abstract
Our lives have been increasingly filled with technologies that use Artificial Intelligence (AI), whether at home, in public spaces, in social organizations, or in services. Like other technologies, adopting this emerging technology also requires society's attention to the challenges that may arise from it. The media brought to the public some unexpected results from using these technologies, for example, the unfairness case in the COMPAS system. It became more evident that these technologies can have unintended consequences. In particular, in the public interest domain, these unintended consequences and their origin are a challenge for public policies, governance, and responsible AI. This work aims to identify the technological and ethical risks in data-driven decision systems based on AI and conduct a diagnosis of these risks and their perception. To do that, we use a triangulation of methods. In the first stage, a search on Web of Science has been performed. We consider all the 412 papers. The second stage corresponds to a analysis of experts. The papers have been classified according to the relevance to the topic by the experts. In the third stage, we use the survey method and include risk insights from stage two in our questions. We found 24 concerns which arise from the perspective of the ethical and technological risk perspective. The perception of participants regarding the level of concern they have with the risks of a data-driven system based on AI is high than their perception of society's concern. Fairness is considered the risk whose perception is more severe. Fairness, Bias, Accountability, Interpretability, and Explainability are considered the most relevant concepts for a responsible AI. Consequently, also the most relevant for responsible governance of AI. © 2022 ACM.
2021
Autores
Becue, A; Praca, I; Gama, J;
Publicação
ARTIFICIAL INTELLIGENCE REVIEW
Abstract
This survey paper discusses opportunities and threats of using artificial intelligence (AI) technology in the manufacturing sector with consideration for offensive and defensive uses of such technology. It starts with an introduction of Industry 4.0 concept and an understanding of AI use in this context. Then provides elements of security principles and detection techniques applied to operational technology (OT) which forms the main attack surface of manufacturing systems. As some intrusion detection systems (IDS) already involve some AI-based techniques, we focus on existing machine-learning and data-mining based techniques in use for intrusion detection. This article presents the major strengths and weaknesses of the main techniques in use. We also discuss an assessment of their relevance for application to OT, from the manufacturer point of view. Another part of the paper introduces the essential drivers and principles of Industry 4.0, providing insights on the advent of AI in manufacturing systems as well as an understanding of the new set of challenges it implies. AI-based techniques for production monitoring, optimisation and control are proposed with insights on several application cases. The related technical, operational and security challenges are discussed and an understanding of the impact of such transition on current security practices is then provided in more details. The final part of the report further develops a vision of security challenges for Industry 4.0. It addresses aspects of orchestration of distributed detection techniques, introduces an approach to adversarial/robust AI development and concludes with human-machine behaviour monitoring requirements.
2021
Autores
Bahri, M; Bifet, A; Gama, J; Gomes, HM; Maniu, S;
Publicação
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY
Abstract
The significant growth of interconnected Internet-of-Things (IoT) devices, the use of social networks, along with the evolution of technology in different domains, lead to a rise in the volume of data generated continuously from multiple systems. Valuable information can be derived from these evolving data streams by applying machine learning. In practice, several critical issues emerge when extracting useful knowledge from these potentially infinite data, mainly because of their evolving nature and high arrival rate which implies an inability to store them entirely. In this work, we provide a comprehensive survey that discusses the research constraints and the current state-of-the-art in this vibrant framework. Moreover, we present an updated overview of the latest contributions proposed in different stream mining tasks, particularly classification, regression, clustering, and frequent patterns. This article is categorized under: Fundamental Concepts of Data and Knowledge > Key Design Issues in Data Mining Fundamental Concepts of Data and Knowledge > Motivation and Emergence of Data Mining
2020
Autores
Fujii, T; Kumano, M; Gama, J; Kimura, M;
Publicação
Complex Networks & Their Applications IX - Volume 2, Proceedings of the Ninth International Conference on Complex Networks and Their Applications, COMPLEX NETWORKS 2020, 1-3 December 2020, Madrid, Spain.
Abstract
We provide a framework for analyzing geographical influence networks that have impacts on visit event sequences for a set of point-of-interests (POIs) in a city. Since mutually-exciting Hawkes processes can naturally model temporal event data and capture interactions between those events, previous work presented a probabilistic model based on Hawkes processes, called CHP model, for finding cooperative structure among online items from their share event sequences. In this paper, based on Hawkes processes, we propose a novel probabilistic model, called RH model, for detecting geographical competitive structure in the set of POIs, and present a method of inferring it from the POI visit event history. We mathematically derive an analytical approximation formula for predicting the popularity of each of the POIs for the RH model, and also extend the CHP model so as to extract geographical cooperative structure. Using synthetic data, we first confirm the effectiveness of the inference method and the validity of the approximation formula. Using real data of Location-Based Social Networks (LBSNs), we demonstrate the significance of the RH model in terms of predicting the future events, and uncover the latent geographical influence networks from the perspective of geographical competitive and cooperative structures. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.
2020
Autores
Andrade, T; Cancela, B; Gama, J;
Publicação
ANNALS OF TELECOMMUNICATIONS
Abstract
Human mobility patterns are associated with many aspects of our life. With the increase of the popularity and pervasiveness of smartphones and portable devices, the Internet of Things (IoT) is turning into a permanent part of our daily routines. Positioning technologies that serve these devices such as the cellular antenna (GSM networks), global navigation satellite systems (GPS), and more recently the WiFi positioning system (WPS) provide large amounts of spatio-temporal data in a continuous way (data streams). In order to understand human behavior, the detection of important places and the movements between these places is a fundamental task. That said, the proposal of this work is a method for discovering user habits over mobility data without any a priori or external knowledge. Our approach extends a density-based clustering method for spatio-temporal data to identify meaningful places the individuals' visit. On top of that, a Gaussian mixture model (GMM) is employed over movements between the visits to automatically separate the trajectories accordingly to their key identifiers that may help describe a habit. By regrouping trajectories that look alike by day of the week, length, and starting hour, we discover the individual's habits. The evaluation of the proposed method is made over three real-world datasets. One dataset contains high-density GPS data and the others use GSM mobile phone data with 15-min sampling rate and Google Location History data with a variable sampling rate. The results show that the proposed pipeline is suitable for this task as other habits rather than just going from home to work and vice versa were found. This method can be used for understanding person behavior and creating their profiles revealing a panorama of human mobility patterns from raw mobility data.
2020
Autores
Andrade, T; Cancela, B; Gama, J;
Publicação
EXPERT SYSTEMS
Abstract
Many aspects of our lives are associated with places and the activities we perform on a daily basis. Most of them are recurrent and demand displacement of the individual between regular places like going to work, school or other important personal locations. To accomplish these recurrent daily activities, people tend to follow regular paths with similar temporal and spatial characteristics, especially because humans are frequently looking for uniformity to support their decisions and make their actions easier or even automatic. In this work, we propose a method for discovering common pathways across users' habits from human mobility data. By using a density-based clustering algorithm, we identify the most preferable locations the users visit, we apply a Gaussian mixture model over these places to automatically separate among all traces, the trajectories that follow patterns in order to discover the representations of individual's habits. By using the longest common sub-sequence algorithm, we search for the trajectories that are more similar over the set of users' habits trips by considering the distance that pairs of users or habits share on the same path. The proposed method is evaluated over two real-world GPS datasets and the results show that the approach is able to detect the most important places in a user's life, detect the routine activities and identify common routes between users that have similar habits paving the way for research techniques in carpooling, recommendation and prediction systems.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.