Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Pedro David Carneiro

2025

An Integrated and User-Friendly Platform for the Deployment of Explainable Artificial Intelligence Methods Applied to Face Recognition

Autores
Albuquerque, C; Neto, PC; Gonc, T; Sequeira, AF;

Publicação
HCI FOR CYBERSECURITY, PRIVACY AND TRUST, HCI-CPT 2025, PT II

Abstract
Face recognition technology, despite its advancements and increasing accuracy, still presents significant challenges in explainability and ethical concerns, especially when applied in sensitive domains such as surveillance, law enforcement, and access control. The opaque nature of deep learning models jeopardises transparency, bias, and user trust. Concurrently, the proliferation of web applications presents a unique opportunity to develop accessible and interactive tools for demonstrating and analysing these complex systems. These tools can facilitate model decision exploration with various images, aiding in bias mitigation or enhancing users' trust by allowing them to see the model in action and understand its reasoning. We propose an explainable face recognition web application designed to support enrolment, identification, authentication, and verification while providing visual explanations through pixel-wise importance maps to clarify the model's decision-making process. The system is built in compliance with the European Union General Data Protection Regulation, ensuring data privacy and user control over personal information. The application is also designed for scalability, capable of efficiently managing large datasets. Load tests conducted on databases containing up to 1,000,000 images confirm its efficiency. This scalability ensures robust performance and a seamless user experience even with database growth.

2025

Balancing Beyond Discrete Categories: Continuous Demographic Labels for Fair Face Recognition

Autores
Neto, PC; Damer, N; Cardoso, JS; Sequeira, AF;

Publicação
CoRR

Abstract

2025

How Knowledge Distillation Mitigates the Synthetic Gap in Fair Face Recognition

Autores
Neto, PC; Colakovic, I; Karakatic, S; Sequeira, AF;

Publicação
COMPUTER VISION-ECCV 2024 WORKSHOPS, PT XX

Abstract
Leveraging the capabilities of Knowledge Distillation (KD) strategies, we devise a strategy to fight the recent retraction of face recognition datasets. Given a pretrained Teacher model trained on a real dataset, we show that carefully utilising synthetic datasets, or a mix between real and synthetic datasets to distil knowledge from this teacher to smaller students can yield surprising results. In this sense, we trained 33 different models with and without KD, on different datasets, with different architectures and losses. And our findings are consistent, using KD leads to performance gains across all ethnicities and decreased bias. In addition, it helps to mitigate the performance gap between real and synthetic datasets. This approach addresses the limitations of synthetic data training, improving both the accuracy and fairness of face recognition models.

2025

Second FRCSyn-onGoing: Winning solutions and post-challenge analysis to improve face recognition with synthetic data

Autores
DeAndres-Tame, I; Tolosana, R; Melzi, P; Vera-Rodriguez, R; Kim, M; Rathgeb, C; Liu, XM; Gomez, LF; Morales, A; Fierrez, J; Ortega-Garcia, J; Zhong, ZZ; Huang, YG; Mi, YX; Ding, SH; Zhou, SG; He, S; Fu, LZ; Cong, H; Zhang, RY; Xiao, ZH; Smirnov, E; Pimenov, A; Grigorev, A; Timoshenko, D; Asfaw, KM; Low, CY; Liu, H; Wang, CY; Zuo, Q; He, ZX; Shahreza, HO; George, A; Unnervik, A; Rahimi, P; Marcel, S; Neto, PC; Huber, M; Kolf, JN; Damer, N; Boutros, F; Cardoso, JS; Sequeira, AF; Atzori, A; Fenu, G; Marras, M; Struc, V; Yu, J; Li, ZJ; Li, JC; Zhao, WS; Lei, Z; Zhu, XY; Zhang, XY; Biesseck, B; Vidal, P; Coelho, L; Granada, R; Menotti, D;

Publicação
INFORMATION FUSION

Abstract
Synthetic data is gaining increasing popularity for face recognition technologies, mainly due to the privacy concerns and challenges associated with obtaining real data, including diverse scenarios, quality, and demographic groups, among others. It also offers some advantages over real data, such as the large amount of data that can be generated or the ability to customize it to adapt to specific problem-solving needs. To effectively use such data, face recognition models should also be specifically designed to exploit synthetic data to its fullest potential. In order to promote the proposal of novel Generative AI methods and synthetic data, and investigate the application of synthetic data to better train face recognition systems, we introduce the 2nd FRCSyn-onGoing challenge, based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024. This is an ongoing challenge that provides researchers with an accessible platform to benchmark (i) the proposal of novel Generative AI methods and synthetic data, and (ii) novel face recognition systems that are specifically proposed to take advantage of synthetic data. We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition such as demographic bias, domain adaptation, and performance constraints in demanding situations, such as age disparities between training and testing, changes in the pose, or occlusions. Very interesting findings are obtained in this second edition, including a direct comparison with the first one, in which synthetic databases were restricted to DCFace and GANDiffFace.

2025

Fairness Under Cover: Evaluating the Impact of Occlusions on Demographic Bias in Facial Recognition

Autores
Mamede, RM; Neto, PC; Sequeira, AF;

Publicação
COMPUTER VISION-ECCV 2024 WORKSHOPS, PT XXI

Abstract
This study investigates the effects of occlusions on the fairness of face recognition systems, particularly focusing on demographic biases. Using the Racial Faces in the Wild (RFW) dataset and synthetically added realistic occlusions, we evaluate their effect on the performance of face recognition models trained on the BUPT-Balanced and BUPT-GlobalFace datasets. We note increases in the dispersion of FMR, FNMR, and accuracy alongside decreases in fairness according to Equalized Odds, Demographic Parity, STD of Accuracy, and Fairness Discrepancy Rate. Additionally, we utilize a pixel attribution method to understand the importance of occlusions in model predictions, proposing a new metric, Face Occlusion Impact Ratio (FOIR), that quantifies the extent to which occlusions affect model performance across different demographic groups. Our results indicate that occlusions exacerbate existing demographic biases, with models placing higher importance on occlusions in an unequal fashion across demographics.

2025

MST-KD: Multiple Specialized Teachers Knowledge Distillation for Fair Face Recognition

Autores
Caldeira, E; Cardoso, JS; Sequeira, AF; Neto, PC;

Publicação
COMPUTER VISION-ECCV 2024 WORKSHOPS, PT XV

Abstract
As in school, one teacher to cover all subjects is insufficient to distill equally robust information to a student. Hence, each subject is taught by a highly specialised teacher. Following a similar philosophy, we propose a multiple specialized teacher framework to distill knowledge to a student network. In our approach, directed at face recognition use cases, we train four teachers on one specific ethnicity, leading to four highly specialized and biased teachers. Our strategy learns a project of these four teachers into a common space and distill that information to a student network. Our results highlighted increased performance and reduced bias for all our experiments. In addition, we further show that having biased/specialized teachers is crucial by showing that our approach achieves better results than when knowledge is distilled from four teachers trained on balanced datasets. Our approach represents a step forward to the understanding of the importance of ethnicity-specific features.

  • 3
  • 6