2022
Autores
Navarro Medina, F; Aguado Agelet, F; Garcia Luis, U; Ulloa, C; Orgeira Crespo, P; Camanzo Mariño, A; Dragos Darau, V; Maia, MM; Gomez San Juan, A; Furtado, C; Machado, V; Califórnia, A; Bogas, S; Ferreira, C; Silva, J; Sousa, L; Machado, J; Roy, P; Auguste, J; Jamier, R; Leconte, B; Frazão, O; Robalinho, P; Pires, AL; Roacha, M; Comesaña, R; Pereira, AM;
Publicação
Proceedings of the International Astronautical Congress, IAC
Abstract
Given the fact that CubeSats are becoming an alternative for accessible, reduced-risk development for space applications within an emergent technological market and that the power demand of these type of nanosatellites is increasing due to the complexity of the defined missions, an alternative solution to traditional energy harvesting systems (i.e., solar panels and batteries) is proposed within the WiPTherm project. Being a high-risk category (FET-Future and Emerging Technologies) project within the H2020 European funding scheme, it aims to provide a Wireless Energy Transfer solution via a photo-thermoelectric plasmonic (HPTP) generator array device that can convert photonic energy to electrical energy via thermal gradient. In order to create it, a long-range, continuous-wave (CW) laser source targets the cells of the HPTP generator, forming, as such, the photo-thermoelectric plasmonic system. Two possible scenarios were taken into account and presented in terms of mission requirements: the laser source charging the satellite from Earth, or a laser system mounted onto a master satellite charging a CubeSat orbiting Mars/Jupiter, within the context of a deep space mission. The development of such Wireless Energy Transfer (WET) system implies an improvement of the current technology in different research fields, among them: nanomaterials, photonics, electronics, and space systems. For the success of the project, all of them shall be developed considering the different interfaces as well as the assembly principles, to be compatible with the support structure: a 3U CubeSat. From the Assembly, Integration and Verification (AIV) plan point of view, a testing philosophy involving different models is presented: an STM of the complete 3U CubeSat for the development of higher-fidelity tests when evaluating both structural and thermal HPTP baseplate capabilities; an Engineering Model, where all the subsystems will be assembled on the CubeSat platform and all its functionalities tested; development models for all spacecraft subsystems that are new developments and are not off the shelf: HPTP, the CubeSat electrical module and the laser generator. As a conclusion, this work presents the concept beyond the technology herein purposed, its applicability, and, from the systems engineering point of view, the challenges faced on the AIV plan. © 2022 International Astronautical Federation, IAF. All rights reserved.
2023
Autores
Robalinho, P; Rodrigues, A; Novais, S; Ribeiro, ABL; Silva, S; Frazão, O;
Publicação
EPJ Web of Conferences
Abstract
2023
Autores
Frazão, O; Robalinho, P; Vaz, A; Soares, L; Soares, B; Monteiro, C; Novais, S; Silva, S;
Publicação
EPJ Web of Conferences
Abstract
2023
Autores
Maia, M; Pires, AL; Rocha, M; Ferreira Teixeira, S; Robalinho, P; Frazao, O; Furtado, C; Califórnia, A; Machado, V; Bogas, S; Ferreira, C; Machado, J; Sousa, L; Luis, UG; San Juan, AMG; Crespo, PO; Medina, FN; Sande, CU; Marino, AC; González, GR; Pereira, AT; Agelet, FA; Jamier, R; Roy, P; Leconte, B; Auguste, JL; Pereira, AM;
Publicação
ADVANCED MATERIALS TECHNOLOGIES
Abstract
Systems for wireless energy transmission (WET) are gaining prominence nowadays. This work presents a WET system based on the photo-thermoelectric effect. With an incident laser beam at lambda = 1450 nm, a temperature gradient is generated in the radial flexible thermoelectric (TE) device, with a carbon-based light collector in its center to enhance the photoheating. The three-part prototype presents a unique approach by using a radial TE device with one simple manufacturing process - screen-printing. A TE ink with a polymeric matrix of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate and doped-Poly(vinyl alcohol) with Sb-Bi-Te microparticles is developed (S similar to 33 mu VK-1 and s similar to 10.31 Sm-1), presenting mechanical and electrical stability. Regarding the device, a full electrical analysis is performed, and the influence of the light collector is investigated using thermal tests, spectrophotometry, and numerical simulations. A maximum output voltage (Vout) of similar to 16 mV and maximum power density of similar to 25 mu Wm(-2) are achieved with Plaser = 2 W. Moreover, the device's viability under extreme conditions is explored. At T similar to 180 K, a 25% increase in Vout compared to room-temperature conditions is achieved, and at low pressures (similar to 10(-6) Torr), an increase of 230% is obtained. Overall, this prototype allows the supply of energy at long distances and remote places, especially for space exploration.
2023
Autores
Robalinho, P; Soares, B; Lobo, A; Silva, S; Frazao, O;
Publicação
SENSORS
Abstract
In this paper, a different Fiber Loop Mirror (FLM) configuration with two circulators is presented. This configuration is demonstrated and characterized for sensing applications. This new design concept was used for strain and torsion discrimination. For strain measurement, the interference fringe displacement has a sensitivity of (0.576 +/- 0.009) pm.mu epsilon(-1). When the FFT (Fast Fourier Transformer) is calculated and the frequency shift and signal amplitude are monitored, the sensitivities are (-2.1 +/- 0.3) x 10(-4) nm(-1) mu epsilon(-1) and (4.9 +/- 0.3) x 10(-7) mu epsilon(-1), respectively. For the characterization in torsion, an FFT peaks variation of (-2.177 +/- 0.002) x 10(-12) nm(-1)/degrees and an amplitude variation of (1.02 +/- 0.06) x 10(-3)/degrees are achieved. This configuration allows the use of a wide range of fiber lengths and with different refractive indices for controlling the free spectral range (FSR) and achieving refractive index differences, i.e., birefringence, higher than 10(-2), which is essential for the development of high sensitivity physical parameter sensors, such as operating on the Vernier effect. Furthermore, this FLM configuration allows the system to be balanced, which is not possible with traditional FLMs.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.