Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Carlos Manuel Soares

2025

MASTFM: Meta-learning and Data Augmentation to Stress Test Forecasting Models

Autores
Inácio, R; Cerqueira, V; Barandas, M; Soares, C;

Publicação
Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track and Demo Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part X

Abstract

2024

METAFORE: algorithm selection for decomposition-based forecasting combinations

Autores
Santos, M; de Carvalho, A; Soares, C;

Publicação
INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS

Abstract
Time series forecasting is an important tool for planning and decision-making. Considering this, several forecasting algorithms can be used, with results depending on the characteristics of the time series. The recommendation of the most suitable algorithm is a frequent concern. Metalearning has been successfully used to recommend the best algorithm for a time series analysis task. Additionally, it has been shown that decomposition methods can lead to better results. Based on previously published studies, in the experiments carried out, time series components were used. This work proposes and empirically evaluates METAFORE, a new time series forecasting approach that uses seasonal trend decomposition with Loess and metalearning to recommend suitable algorithms for time series forecasting combinations. Experimental results show that METAFORE can obtain a better predictive performance than single models with statistical significance. In the experiments, METAFORE also outperformed models widely used in the state-of-the-art, such as the long short-term memory neural network architectures, in more than 70%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$70\%$$\end{document} of the time series tested. Finally, the results show that the joint use of metalearning and time series decomposition provides a competitive approach to time series forecasting.

2026

Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part VII

Autores
Ribeiro, RP; Pfahringer, B; Japkowicz, N; Larrañaga, P; Jorge, AM; Soares, C; Abreu, PH; Gama, J;

Publicação
ECML/PKDD (7)

Abstract

2026

Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part VI

Autores
Ribeiro, RP; Pfahringer, B; Japkowicz, N; Larrañaga, P; Jorge, AM; Soares, C; Abreu, PH; Gama, J;

Publicação
ECML/PKDD (6)

Abstract

2026

Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part V

Autores
Ribeiro, RP; Pfahringer, B; Japkowicz, N; Larrañaga, P; Jorge, AM; Soares, C; Abreu, PH; Gama, J;

Publicação
ECML/PKDD (5)

Abstract

2026

Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part IV

Autores
Ribeiro, RP; Pfahringer, B; Japkowicz, N; Larrañaga, P; Jorge, AM; Soares, C; Abreu, PH; Gama, J;

Publicação
ECML/PKDD (4)

Abstract

  • 43
  • 46