Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Paulo Soares Santos

2023

Tuning bimetallic Au@Ag nanorods Localized Surface Plasmon Resonance on side-polished optical fiber sensing configurations at near-infrared wavelengths

Autores
dos Santos, SS; Mendes, J; de Almeida, MMM; Pastoriza Santos, I; Coelho, CC;

Publicação
Proceedings of SPIE - The International Society for Optical Engineering

Abstract
The increasing demand for precise chemical and biological sensing has led to the development of highly efficient plasmonic optical fiber sensors. Therefore, it is essential to optimize and match the operating wavelength region of both the optical fiber configuration and localized surface plasmon resonance of nanoparticles (NPs). This can be achieved by developing NPs that can reach resonance at near-infrared wavelengths, where refractive index sensitivity is enhanced, and silica optical fibers have lower losses. High aspect-ratio bimetallic Au@Ag nanorods and different side-polished fiber structures are tested using numerical simulations. The selected optical fiber configuration was based on a side-polished fiber with a 1 mm polished section. It is compared power losses and power at the NP interface for two configurations: a step-index single-mode fiber (SMF) with core/cladding diameters of 8.2/125 µm and a multimode graded-index fiber (GIF) with 62.5/125 µm at various polishing depths. The results showed that the best performance for both configurations was achieved at similar polishing depths, namely 59.5 and 55.2 µm for the SMF and GIF, respectively. The optical impact of retardation effects due to the proximity with the fiber structure were also observed, which caused a reduction in sensitivity from 1750 nm/RIU to 1500 nm/RIU and a red-shift of around 70 nm. © 2023 SPIE.

2023

Low-Cost Wideband Interrogation System for Fiber Optic Sensors

Autores
Araujo, JCC; dos Santos, PSS; Dias, B; de Almeida, JMMM; Coelho, LCC;

Publicação
IEEE SENSORS JOURNAL

Abstract
The interrogation of optical fiber sensors (OFS) often relies on complex devices such as optical spectrum analyzers (OSAs) that are expensive with low portability and mainly suited to laboratory measurements or dedicated interrogation systems with limited spectral range. An interrogation unit was designed and fabricated using a photodetector combined with a micro-electromechanical system and a Fabry-Perot interferometer (MEMS-FPI) working as a tunable filter with a response in the range 1350-1650 nm. Deconvolution techniques were applied to mitigate the effect of the broadband response of the tunable filter on the measured signal. The performance of the unit was validated with the interrogation of long-period fiber gratings (LPFGs) as temperature, refractive index (RI), and relative humidity (RH) sensors. For the temperature, a sensitivity of 0.135 +/- 0.007 nm/degrees C was obtained, which showed a 4.9% relative error when compared to the same measurement with an OSA. For the RI, a sensitivity of 147 +/- 11 nm/RIU was obtained, which showed a relative error lower than 1% when compared to the OSA. For the humidity, sensitivities of 0.742 +/- 0.005 and 0.056 +/- 0.006 nm/%RH were obtained, with errors of 2.75% and 6.67%, respectively, when compared to a commercial dedicated interrogation system. The low relative error obtained when compared to commercial alternatives shows the potential of the system to be used in real-time applications that require portability, low cost, energy efficiency, and capacity for integration in dedicated systems.

2023

Spectral Analysis Methods for Improved Resolution and Sensitivity: Enhancing SPR and LSPR Optical Fiber Sensing

Autores
Dos Santos, PSS; Mendes, JP; Dias, B; Perez-Juste, J; De Almeida, JMMM; Pastoriza-Santos, I; Coelho, LCC;

Publicação
SENSORS

Abstract
Biochemical-chemical sensing with plasmonic sensors is widely performed by tracking the responses of surface plasmonic resonance peaks to changes in the medium. Interestingly, consistent sensitivity and resolution improvements have been demonstrated for gold nanoparticles by analyzing other spectral features, such as spectral inflection points or peak curvatures. Nevertheless, such studies were only conducted on planar platforms and were restricted to gold nanoparticles. In this work, such methodologies are explored and expanded to plasmonic optical fibers. Thus, we study-experimentally and theoretically-the optical responses of optical fiber-doped gold or silver nanospheres and optical fibers coated with continuous gold or silver thin films. Both experimental and numerical results are analyzed with differentiation methods, using total variation regularization to effectively minimize noise amplification propagation. Consistent resolution improvements of up to 2.2x for both types of plasmonic fibers are found, demonstrating that deploying such analysis with any plasmonic optical fiber sensors can lead to sensing resolution improvements.

  • 4
  • 4