2024
Autores
Alves, B; Almeida, A; Silva, C; Pais, D; Ribeiro, RP; Gama, J; Fernandes, JM; Brás, S; Sebastião, R;
Publicação
Human and Artificial Rationalities. Advances in Cognition, Computation, and Consciousness - Third International Conference, HAR 2024, Paris, France, September 17-20, 2024, Proceedings
Abstract
Pain is a highly subjective phenomenon that depends on multiple factors. The common methods used to evaluate pain require the person to be awakened and cooperative, which may not always be possible. Moreover, such methods are subject to non-quantifiable influences, namely the impact of an individual’s emotional state on how pain is perceived or how negative emotions may exacerbate pain perception, while positive emotions may attenuate it. The goal of this study was to conduct a novel protocol for pain induction with emotional elicitation and assess its feasibility. In this protocol, the physiological responses were monitored, and collected, through Electrocardiogram, Electrodermal Activity, and surface Electromyogram signals. Along the protocol, the pain perception was evaluated using a 0–10 numerical rating scale and by registering the time from the pain stimulus beginning to the Pain and Tolerance Thresholds. This study comprised three emotional sessions, negative, positive, and neutral, which were performed through videos of excerpts of terror, comedy, and documentary films, respectively, followed by pain induction using the Cold Pressor Task (CPT). A total of 56 participants performed the study, with a CPT mean time of about 91.70 ± 39.64 s among all the sessions. The conducted protocol was considered feasible and safe as it allowed the collection of physiological data, pain, and questionnaires’ reports from 56 participants, without any harm to them. Moreover, the collected data can be further used to assess how emotional conditions influence pain perception and to provide better emotion-calibrated pain recognition systems based on physiological signals. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2025
Autores
Shaji, N; Tabassum, S; Ribeiro, RP; Gama, J; Santana, P; Garcia, A;
Publicação
COMPLEX NETWORKS & THEIR APPLICATIONS XIII, COMPLEX NETWORKS 2024, VOL 1
Abstract
Waste transport management is a critical sector where maintaining accurate records and preventing fraudulent or illegal activities is essential for regulatory compliance, environmental protection, and public safety. However, monitoring and analyzing large-scale waste transport records to identify suspicious patterns or anomalies is a complex task. These records often involve multiple entities and exhibit variability in waste flows between them. Traditional anomaly detection methods relying solely on individual transaction data, may struggle to capture the deeper, network-level anomalies that emerge from the interactions between entities. To address this complexity, we propose a hybrid approach that integrates network-based measures with machine learning techniques for anomaly detection in waste transport data. Our method leverages advanced graph analysis techniques, such as sub-graph detection, community structure analysis, and centrality measures, to extract meaningful features that describe the network's topology. We also introduce novel metrics for edge weight disparities. Further, advanced machine learning techniques, including clustering, neural network, density-based, and ensemble methods are applied to these structural features to enhance and refine the identification of anomalous behaviors.
2025
Autores
Chandramohan, MS; da Silva, IM; Ribeiro, RP; Jorge, A; da Silva, JE;
Publicação
ENVIRONMENTS
Abstract
This study investigates spatial distribution and chemical elemental composition screening in soils in Rome (Italy) using X-ray fluorescence analysis. Fifty-nine soil samples were collected from various locations within the urban areas of the Rome municipality and were analyzed for 19 elements. Multivariate statistical techniques, including nonlinear mapping, principal component analysis, and hierarchical cluster analysis, were employed to identify clusters of similar soil samples and their spatial distribution and to try to obtain environmental quality information. The soil sample clusters result from natural geological processes and anthropogenic activities on soil contamination patterns. Spatial clustering using the k-means algorithm further identified six distinct clusters, each with specific geographical distributions and elemental characteristics. Hence, the findings underscore the importance of targeted soil assessments to ensure the sustainable use of land resources in urban areas.
2025
Autores
Paim, AM; Gama, J; Veloso, B; Enembreck, F; Ribeiro, RP;
Publicação
40TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING
Abstract
The learning from continuous data streams is a relevant area within machine learning, focusing on the creation and updating of predictive models in real time as new data becomes available for training and prediction. Among the most widely used methods for this type of task, Hoeffding Trees are highly valued for their simplicity and robustness across a variety of applications and are considered the primary choice for generating decision trees in data stream contexts. However, Hoeffding Trees tend to continuously expand as new data is incorporated, resulting in increased processing time and memory consumption, often without providing significant gains in accuracy. In this study, we propose an instance selection scheme that combines different strategies to regularize Hoeffding Trees and their variants, mitigating excessive growth without compromising model accuracy. The method selects misclassified instances and a fraction of correctly classified instances during the training phase. After extensive experimental evaluation, the instance selection scheme demonstrates superior predictive performance compared to the original models (without selection), for both real and synthetic datasets for data streams, using a reduced subset of examples. Additionally, the method achieves relevant improvements in processing time, model complexity, and memory consumption, highlighting the effectiveness of the proposed instance selection scheme.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.