Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Luís Paulo Santos

1997

Enhancing load distribution strategies through simulation

Autores
Cunha, A; Santos, LP; Belo, O;

Publicação
SIMULATION IN INDUSTRY: 9TH EUROPEAN SIMULATION SYMPOSIUM 1997

Abstract
Load distribution is a well known critical problem in every distributed system. From operating systems to agent oriented applications it is not difficult to find cases where processing nodes are overloaded when, at the same time, other peers present low levels of activity. In agent oriented applications, where the appeal to cooperation is almost a constant event, these unbalanced situations may generate serious cases of contention, deadlock or simply large idle times. The implementation of load distribution strategies in a distributed system may help significantly to improve its overall performance and reduce effectively such undesirable situations. In order to study the effects of different load distribution policies in agent based applications a generic load distribution simulation system was design and implemented. The system allows the specification of multiorganisational distributed systems with dynamic load patterns. Its main characteristics and functionalities are presented in this paper.

2015

A framework for efficient execution of data parallel irregular applications on heterogeneous systems

Autores
Ribeiro R.; Barbosa J.; Santos L.P.;

Publicação
Parallel Processing Letters

Abstract
Exploiting the computing power of the diversity of resources available on heterogeneous systems is mandatory but a very challenging task. The diversity of architectures, execution models and programming tools, together with disjoint address spaces and different computing capabilities, raise a number of challenges that severely impact on application performance and programming productivity. This problem is further compounded in the presence of data parallel irregular applications. This paper presents a framework that addresses development and execution of data parallel irregular applications in heterogeneous systems. A unified task-based programming and execution model is proposed, together with inter and intra-device scheduling, which, coupled with a data management system, aim to achieve performance scalability across multiple devices, while maintaining high programming productivity. Intra-device scheduling on wide SIMD/SIMT architectures resorts to consumer-producer kernels, which, by allowing dynamic generation and rescheduling of new work units, enable balancing irregular workloads and increase resource utilization. Results show that regular and irregular applications scale well with the number of devices, while requiring minimal programming effort. Consumer-producer kernels are able to sustain significant performance gains as long as the workload per basic work unit is enough to compensate overheads associated with intra-device scheduling. This not being the case, consumer kernels can still be used for the irregular application. Comparisons with an alternative framework, StarPU, which targets regular workloads, consistently demonstrate significant speedups. This is, to the best of our knowledge, the first published integrated approach that successfully handles irregular workloads over heterogeneous systems.

2021

LOOM: Interweaving tightly coupled visualization and numeric simulation framework

Autores
Barbosa, J; Navratil, P; Paulo Santos, L; Fussell, D;

Publicação
ACM International Conference Proceeding Series

Abstract
Traditional post-hoc high-fidelity scientific visualization (HSV) of numerical simulations requires multiple I/O check-pointing to inspect the simulation progress. The costs of these I/O operations are high and can grow exponentially with increasing problem sizes. In situ HSV dispenses with costly check-pointing I/O operations, but requires additional computing resources to generate the visualization, increasing power and energy consumption. In this paper we present LOOM, a new interweaving approach supported by a task scheduling framework to allow tightly coupled in situ visualization without significantly adding to the overall simulation runtime. The approach exploits the idle times of the numerical simulation threads, due to workload imbalances, to perform the visualization steps. Overall execution time (simulation plus visualization) is minimized. Power requirements are also minimized by sharing the same computational resources among numerical simulation and visualization tasks. We demonstrate that LOOM reduces time to visualization by 3 × compared to a traditional non-interwoven pipeline. Our results here demonstrate good potential for additional gains for large distributed-memory use cases with larger interleaving opportunities. © 2021 ACM.

2023

Policy gradients using variational quantum circuits

Autores
Sequeira, A; Santos, LP; Barbosa, LS;

Publicação
QUANTUM MACHINE INTELLIGENCE

Abstract
Variational quantum circuits are being used as versatile quantum machine learning models. Some empirical results exhibit an advantage in supervised and generative learning tasks. However, when applied to reinforcement learning, less is known. In this work, we considered a variational quantum circuit composed of a low-depth hardware-efficient ansatz as the parameterized policy of a reinforcement learning agent. We show that an epsilon-approximation of the policy gradient can be obtained using a logarithmic number of samples concerning the total number of parameters. We empirically verify that such quantum models behave similarly to typical classical neural networks used in standard benchmarking environments and quantum control, using only a fraction of the parameters. Moreover, we study the barren plateau phenomenon in quantum policy gradients using the Fisher information matrix spectrum.

  • 10
  • 10