2024
Autores
Paulos, JP; Macedo, P; Bessa, R; Fidalgo, JN; Oliveira, J;
Publicação
2024 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE, ISGT EUROPE
Abstract
This article proposes a methodology for high loss detection in LV network, based on a very small set of commonly available data/metadata from networks connected to an MV/LV substation. The approach is based on a combination of predictors from several distinct categories, including network data, metadata, and measured smart meter data. Several independent groups of unranked real networks were simulated, and it was possible to find the top ten networks with the highest level of losses with a very satisfactory success rate (76% to 98%), depending on selected groupings folds. Due to the impracticability of analyzing all LV networks, the identification of the highest loss ones is essential for the definition of loss reduction planning since, with this list filtering, it is possible to determine with a good degree of certainty which networks require maintenance or upgrade.
2024
Autores
Macedo, P; Fidalgo, JN;
Publicação
2024 20TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM 2024
Abstract
This article presents a methodology to estimate the evolution of QoS indices, based on investments and maintenance costs carried out in the DN. The indices were estimated at various disaggregated levels, including the global index, 3 different QoS zones (urban, semi-urban and rural) and 278 municipalities, thereby facilitating the mitigation of QoS asymmetries by allocating investments and maintenance actions to specific regions. To achieve this objective, an optimization problem was formulated to allocate investments and maintenance costs to municipalities with higher improvement benefit-cost ratios, potentially exhibiting lower levels of QoS. This methodology was adopted by the Portuguese DSO to establish the future investments plan from 2023 to 2027. The results demonstrate estimations of good performance, considering the stochastic nature of the phenomena affecting QoS (e.g. atmospheric conditions), which are included in this study, thus developing confidence levels for the global indices.
2024
Autores
Moreno, A; Villar, J; Macedo, P; Silva, R; Bayo, S; Bessa, R;
Publicação
2024 20TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM 2024
Abstract
The deployment of energy communities (EC) will foster new business models contributing to the decentralization and democratization of energy access and a reduction in the energy bill of final consumers. This decentralization is only possible if investments are made in production and storage technologies, that must be installed near the locals of consumption, according to common rules of the regulatory frameworks of EC. In this paper we propose a methodology for the optimal sizing of production and shared storage assets, and we assess the cost reduction of considering shared storage assets. We then formulate seven business models (BM) that dictate how to share this benefit among the EC members, and we propose two indicators to assess them. Results show the difficulty in choosing a BM as well as the limitations of the BM and of the indicators.
2023
Autores
Fidalgo, JN; Macedo, PM; Rocha, HFR;
Publicação
2023 19TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM
Abstract
A common problem in distribution planning is the scarcity of historic data (training examples) relative to the number of variables, meaning that most data-driven techniques cannot be applied in such situations, due to the risk of overfitting. Thus, the suitable regression techniques are restrained to efficient models, preferably with embedded regularization features. This article compares three of these techniques: LASSO, Bayesian and CMLR (Conditioned multi-linear regression - a new approach developed within the scope of a project with a distribution company). The results showed that each technique has its own advantages and limitations. The Bayesian regression has the main advantage of providing inherent confidence intervals. The LASSO is a very economic and efficient regression tool. The CMLR is versatile and provided the best performance.A common problem in distribution planning is the scarcity of historic data (training examples) relative to the number of variables, meaning that most data-driven techniques cannot be applied in such situations, due to the risk of overfitting. Thus, the suitable regression techniques are restrained to efficient models, preferably with embedded regularization features. This article compares three of these techniques: LASSO, Bayesian and CMLR (Conditioned multi-linear regression - a new approach developed within the scope of a project with a distribution company). The results showed that each technique has its own advantages and limitations. The Bayesian regression has the main advantage of providing inherent confidence intervals. The LASSO is a very economic and efficient regression tool. The CMLR is versatile and provided the best performance.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.