Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Susana Alexandra Barbosa

2023

Temporal variability of gamma radiation and aerosol concentration over the North Atlantic ocean

Autores
Dias, N; Amaral, G; Almeida, C; Ferreira, A; Camilo, A; Silva, E; Barbosa, S;

Publicação

Abstract
<p>Gamma radiation measured over the ocean is mainly due to airborne radionuclides, as gamma emission by radon degassing from the ocean is negligible. Airborne gamma-emitting elements include radon progeny (Pb-2114, Bi-214, Pb-210) and cosmogenic radionuclides such as Be-7. Radon progeny attaches readily to aerosols, thus the fate of gamma-emitting radon progeny, after its formation by radioactive decay from radon, is expected to be closely linked to that of aerosols.</p> <p>Gamma radiation measurements over the Atlantic Ocean were made on board the ship-rigged sailing ship NRP Sagres in the framework of project SAIL (Space-Atmosphere-Ocean Interactions in the marine boundary Layer). The measurements were performed continuously with a NaI(Tl) scintillator counting all gamma rays from 475 keV to 3 MeV.  </p> <p>The counts from the sensor were recorded every 1 second into a computer system which had his time reference corrected by a GNSS pulse per second (PPS) signal. The GNSS was also used to precisely position the ship. The measurements were performed over the Atlantic ocean from January to May 2020, along the ship’s round trip from Lisboa - Cape Verde – Rio de Janeiro – Buenos Aires – Cape Town – Cape Verde - Lisboa.</p> <p>The results show that the gamma radiation time series displays considerable higher counts and larger variability in January compared to the remaining period. Reanalysis data also indicate higher aerosol concentration. This work investigates in detail the association between the temporal evolution of the gamma radiation measurements obtained from the SAIL campaign over the Atlantic Ocean and co-located total aerosol concentration at 550 nm obtained every 3 hours from EAC4(ECMWF Atmospheric Composition Reanalysis 4) data.</p>

2020

Atmospheric electric field in the Atlantic marine boundary layer: first results from the SAIL project

Autores
Barbosa, S; Camilo, M; Almeida, C; Almeida, J; Amaral, G; Aplin, K; Dias, N; Ferreira, A; Harrison, G; Heilmann, A; Lima, L; Martins, A; Silva, I; Viegas, D; Silva, E;

Publicação

Abstract
<p class="western" align="justify"><span lang="en-US">The study of the electrical properties of the atmospheric marine boundary layer is important as the effect of natural radioactivity in driving near surface ionisation is significantly reduced over the ocean, and the concentration of aerosols is also typically lower than over continental areas, allowing a clearer examination of space-atmosphere interactions. Furthermore, cloud cover over the ocean is dominated by low-level clouds and most of the atmospheric charge lies near the earth surface, at low altitude cloud tops. </span></p> <p class="western" align="justify"><span lang="en-US">The relevance of electric field observations in the marine boundary layer is enhanced by the the fact that the electrical conductivity of the ocean air is clearly linked to global atmospheric pollution and aerosol content. The increase in aerosol pollution since the original observations made in the early 20th century by the survey ship Carnegie is a pressing and timely motivation for modern measurements of the atmospheric electric field in the marine boundary layer. Project SAIL (Space-Atmosphere-Ocean Interactions in the marine boundary Layer) addresses this challenge by means of an unique monitoring campaign on board the ship-rigged sailing ship NRP Sagres during its 2020 circumnavigation expedition. </span></p> <p class="western" align="justify"><span lang="en-US">The Portuguese Navy ship NRP Sagres departed from Lisbon on January 5th in a journey around the globe that will take 371 days. Two identical field mill sensors (CS110, Campbell Scientific) are installed </span><span lang="en-US">o</span><span lang="en-US">n the mizzen mast, one at a height of 22 m, and the other at a height of 5 meters. </span><span lang="en-US">A visibility sensor (SWS050, Biral) was also set-up on the same mast in order to have measurements of the extinction coefficient of the atmosphere and assess fair-weather conditions.</span><span lang="en-US"> Further observations include gamma radiation measured with a NaI(Tl) scintillator from 475 keV to 3 MeV, cosmic radiation up to 17 MeV, and atmospheric ionisation from a cluster ion counter (Airel). The</span><span lang="en-US"> 1 Hz measurements of the atmospheric electric field</span><span lang="en-US"> and from all the other sensors</span><span lang="en-US"> are </span><span lang="en-US">linked to the same rigorous temporal reference frame and precise positioning through kinematic GNSS observations. </span></p> <p class="western" align="justify"><span lang="en-US">Here the first results of the SAIL project will be presented, focusing on fair-weather electric field over the Atlantic. The observations obtained in the first three sections of the circumnavigation journey, including Lisbon (Portugal) - Tenerife (Spain), from 5 to 10 January, Tenerife - Praia (Cape Verde) from 13 to 19 January, and across the Atlantic from Cape Verde to Rio de Janeiro (Brasil), from January 22nd to February 14th, will be presented and discussed.</span></p>

2023

Precipitation-Driven Gamma Radiation Enhancement Over the Atlantic Ocean

Autores
Barbosa, S; Dias, N; Almeida, C; Silva, G; Ferreira, A; Camilo, A; Silva, E;

Publicação
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES

Abstract
Gamma radiation over the Atlantic Ocean was measured continuously from January to May 2020 by a NaI(Tl) detector installed on board the Portuguese navy's ship NRP Sagres. Enhancements in the gamma radiation values are identified automatically by an algorithm for detection of anomalies in mean and variance as well as by visual inspection. The anomalies are typically +50% above the background level and relatively rare events (similar to<10% of the days). All the detected anomalies are associated with simultaneous precipitation events, consistent with the wet deposition of scavenged radionuclides. The enhancements are detected in the open ocean even at large distances (+500 km) from the nearest coastline. Back trajectories reveal that half of these events are associated with air masses experiencing continental land influences, but the other half do not display evidence of recent land contact. The enhancements in gamma radiation very far from land and with no evidence of continental fetch from back trajectories are difficult to explain as resulting only from radionuclides with a terrestrial source such as radon and its progeny. Further investigation and additional measurements are needed to improve understanding on the sources of ambient radioactivity in the open ocean and assess whether gamma radiation in the marine environment is influenced not only by radionuclides of terrestrial origin, but also cosmogenic radionuclides, like Beryllium-7, formed in the upper atmosphere but with the ability to be transported downward and serve as a tracer of the aerosols to which it attaches. Plain Language Summary Radioactive elements such as the noble gas radon and those produced by its radioactive decay are naturally present in the environment and used as tracers of atmospheric transport and composition. In particular, the noble gas radon, being inert and of predominantly terrestrial origin, is used to identify pristine marine air masses with no land contamination. Precipitation over land typically brings radon from the atmosphere to the surface, enhancing gamma radiation on the ground, but such enhancements have not been identified before nor expected over the ocean due to the low amount of radon typical of marine air masses. Here we report, for the first time, gamma radiation enhancements associated with precipitation in the oceanic environment, using measurements performed over the Atlantic Ocean in a campaign onboard the Portuguese navy ship NRP Sagres.

  • 16
  • 16