2024
Autores
Golalikhani, M; Oliveira, BB; Correia, GHD; Oliveira, JF; Carravilla, MA;
Publicação
TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW
Abstract
One of the main challenges of one-way carsharing systems is to maximize profit by attracting potential customers and utilizing the fleet efficiently. Pricing plans are mid or long-term decisions that affect customers' decision to join a carsharing system and may also be used to influence their travel behavior to increase fleet utilization e.g., favoring rentals on off-peak hours. These plans contain different attributes, such as registration fee, travel distance fee, and rental time fee, to attract various customer segments, considering their travel habits. This paper aims to bridge a gap between business practice and state of the art, moving from unique single-tariff plan assumptions to a realistic market offer of multi-attribute plans. To fill this gap, we develop a mixed-integer linear programming model and a solving method to optimize the value of plans' attributes that maximize carsharing operators' profit. Customer preferences are incorporated into the model through a discrete choice model, and the Brooklyn taxi trip dataset is used to identify specific customer segments, validate the model's results, and deliver relevant managerial insights. The results show that developing customized plans with time- and location-dependent rates allows the operators to increase profit compared to fixed-rate plans. Sensitivity analysis reveals how key parameters impact customer choices, pricing plans, and overall profit.
2024
Autores
Vaz, TG; Oliveira, BB; Brandao, L;
Publicação
APPLIED ENERGY
Abstract
In the energy production sector, increasing the quantity and efficiency of renewable energies, such as hydropower plants, is crucial to mitigate climate change. This paper proposes a new and flexible model for optimising operational decisions in watershed systems with interconnected dams. We propose a systematic representation of watersheds by a network of different connection points, which is the basis for an efficient Mixed-Integer Linear Programming model. The model is designed to be adaptable to different connections between dams in both main and tributary rivers. It supports decisions on power generation, pumping and water discharge, maximising profit, and considering realistic constraints on water use and factors such as future energy prices and weather conditions. A relax-and-fix heuristic is proposed to solve the model, along with two heuristic variants to accommodate different watershed structures and sizes. Methodological tests with simulated instances validate their performance, with both variants achieving results within 1% of the optimal solution faster than the model for the tested instances. To evaluate the performance of the approaches in a real-world scenario, we analyse the case study of the C & aacute;vado watershed (Portugal), providing relevant insights for managing dam operations. The model generally follows the actual decisions made in typical situations and flood scenarios. However, in the case of droughts, it tends to be more conservative, saving water unless necessary or profitable. The model can be used in a decision-support system to provide decision-makers with an integrated view of the entire watershed and optimised solutions to the operational problem at hand.
2023
Autores
Nascimento, DN; Cherri, AC; Oliveira, JF; Oliveira, BB;
Publicação
COMPUTERS & INDUSTRIAL ENGINEERING
Abstract
When dealing with cutting problems, the generation of usable leftovers proved to be a good strategy for decreasing material waste. Focusing on practical applications, the main challenge in the implementation of this strategy is planning the cutting process to produce leftovers with a high probability of future use without complete information about the demand for any ordered items. We addressed the two-dimensional cutting stock with usable leftovers and uncertainty in demand, a complex and relevant problem recurring in companies due to the unpredictable occurrence of customer orders. To deal with this problem, a two-stage formulation that approximates the uncertain demand by a finite set of possible scenarios was proposed. Also, we proposed a matheuristic to support decision-makers by providing good-quality solutions in reduced time. The results obtained from the computational experiments using instances from the literature allowed us to verify the matheuristic performance, demonstrating that it can be an efficient tool if applied to real-life situations.
2023
Autores
Viana, DB; Oliveira, BB;
Publicação
Springer Proceedings in Mathematics and Statistics
Abstract
Trade promotions are complex marketing agreements between a retailer and a manufacturer aiming to drive up sales. The retailer proposes numerous sales promotions that the manufacturer partially supports through discounts and deductions. In the Portuguese consumer packaged goods (CPG) sector, the proportion of price-promoted sales to regular-priced sales has increased significantly, making proper promotional planning crucial in ensuring manufacturer margins. In this context, a decision support system was developed to aid in the promotional planning process of two key product categories of a Portuguese CPG manufacturer. This system allows the manufacturer’s commercial team to plan and simulate promotional scenarios to better evaluate a proposed trade promotion and negotiate its terms. The simulation is powered by multiple gradient boosting machine models that estimate sales for a given promotion based solely on the scarce data available to the manufacturer. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.