2023
Autores
Macedo, JN; Rodrigues, E; Viera, M; Saraiva, J;
Publicação
Proceedings of the 2023 ACM SIGPLAN International Workshop on Partial Evaluation and Program Manipulation, PEPM 2023, Boston, MA, USA, January 16-17, 2023
Abstract
Strategic term re-writing and attribute grammars are two powerful programming techniques widely used in language engineering. The former relies on strategies to apply term re-write rules in defining large-scale language transformations, while the latter is suitable to express context-dependent language processing algorithms. These two techniques can be expressed and combined via a powerful navigation abstraction: generic zippers. This results in a concise zipper-based embedding offering the expressiveness of both techniques. Such elegant embedding has a severe limitation since it recomputes attribute values. This paper presents a proper and efficient embedding of both techniques. First, attribute values are memoized in the zipper data structure, thus avoiding their re-computation. Moreover, strategic zipper based functions are adapted to access such memoized values. We have implemented our memoized embedding as the Ztrategic library and we benchmarked it against the state-of-the-art Strafunski and Kiama libraries. Our first results show that we are competitive against those two well established libraries. © 2023 ACM.
2023
Autores
Abreu, N; Souza, R; Pinto, A; Matos, A; Pires, M;
Publicação
DATA
Abstract
BIM (building information modelling) has gained wider acceptance in the AEC (architecture, engineering, and construction) industry. Conversion from 3D point cloud data to vector BIM data remains a challenging and labour-intensive process, but particularly relevant during various stages of a project lifecycle. While the challenges associated with processing very large 3D point cloud datasets are widely known, there is a pressing need for intelligent geometric feature extraction and reconstruction algorithms for automated point cloud processing. Compared to outdoor scene reconstruction, indoor scenes are challenging since they usually contain high amounts of clutter. This dataset comprises the indoor point cloud obtained by scanning four different rooms (including a hallway): two office workspaces, a workshop, and a laboratory including a water tank. The scanned space is located at the Electrical and Computer Engineering department of the Faculty of Engineering of the University of Porto. The dataset is fully labelled, containing major structural elements like walls, floor, ceiling, windows, and doors, as well as furniture, movable objects, clutter, and scanning noise. The dataset also contains an as-built BIM that can be used as a reference, making it suitable for being used in Scan-to-BIM and Scan-vs-BIM applications. For demonstration purposes, a Scan-vs-BIM change detection application is described, detailing each of the main data processing steps. Dataset: https://doi.org/10.5281/zenodo.7948116 Dataset License: Creative Commons Attribution 4.0 International License (CC BY 4.0).
2023
Autores
de Oliveira, M; Barbosa, LS;
Publicação
FOUNDATIONS OF SCIENCE
Abstract
As a compact representation of joint probability distributions over a dependence graph of random variables, and a tool for modelling and reasoning in the presence of uncertainty, Bayesian networks are of great importance for artificial intelligence to combine domain knowledge, capture causal relationships, or learn from incomplete datasets. Known as a NP-hard problem in a classical setting, Bayesian inference pops up as a class of algorithms worth to explore in a quantum framework. This paper explores such a research direction and improves on previous proposals by a judicious use of the utility function in an entangled configuration. It proposes a completely quantum mechanical decision-making process with a proven computational advantage. A prototype implementation in Qiskit (a Python-based program development kit for the IBM Q machine) is discussed as a proof-of-concept.
2023
Autores
Macedo, R; Miranda, M; Tanimura, Y; Haga, J; Ruhela, A; Harrell, SL; Evans, RT; Pereira, J; Paulo, J;
Publicação
2023 IEEE/ACM 23RD INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING, CCGRID
Abstract
Modern I/O applications that run on HPC infrastructures are increasingly becoming read and metadata intensive. However, having multiple applications submitting large amounts of metadata operations can easily saturate the shared parallel file system's metadata resources, leading to overall performance degradation and I/O unfairness. We present PADLL, an application and file system agnostic storage middleware that enables QoS control of data and metadata workflows in HPC storage systems. It adopts ideas from Software-Defined Storage, building data plane stages that mediate and rate limit POSIX requests submitted to the shared file system, and a control plane that holistically coordinates how all I/O workflows are handled. We demonstrate its performance and feasibility under multiple QoS policies using synthetic benchmarks, real-world applications, and traces collected from a production file system. Results show that PADLL can enforce complex storage QoS policies over concurrent metadata-aggressive jobs, ensuring fairness and prioritization.
2023
Autores
Fortier, I; Wey, TW; Bergeron, J; de Moira, AP; Nybo Andersen, AM; Bishop, T; Murtagh, MJ; Miocevic, M; Swertz, MA; van Enckevort, E; Marcon, Y; Mayrhofer, MT; Ornelas, JP; Sebert, S; Santos, AC; Rocha, A; Wilson, RC; Griffith, LE; Burton, P;
Publicação
JOURNAL OF DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE
Abstract
Optimizing research on the developmental origins of health and disease (DOHaD) involves implementing initiatives maximizing the use of the available cohort study data; achieving sufficient statistical power to support subgroup analysis; and using participant data presenting adequate follow-up and exposure heterogeneity. It also involves being able to undertake comparison, cross-validation, or replication across data sets. To answer these requirements, cohort study data need to be findable, accessible, interoperable, and reusable (FAIR), and more particularly, it often needs to be harmonized. Harmonization is required to achieve or improve comparability of the putatively equivalent measures collected by different studies on different individuals. Although the characteristics of the research initiatives generating and using harmonized data vary extensively, all are confronted by similar issues. Having to collate, understand, process, host, and co-analyze data from individual cohort studies is particularly challenging. The scientific success and timely management of projects can be facilitated by an ensemble of factors. The current document provides an overview of the 'life course' of research projects requiring harmonization of existing data and highlights key elements to be considered from the inception to the end of the project.
2023
Autores
Almeida, JB; Barbosa, M; Barthe, G; Grégoire, B; Laporte, V; Léchenet, JC; Oliveira, T; Pacheco, H; Quaresma, M; Schwabe, P; Séré, A; Strub, PY;
Publicação
IACR Trans. Cryptogr. Hardw. Embed. Syst.
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.