2025
Autores
Stapel, N; Lupu, R; Kötting, N; Heller, M; Sorribas, V; Boulay, H; Duarte, J; Malheiro, B; Ribeiro, C; Justo, J; Silva, F; Ferreira, P; Guedes, P;
Publicação
Lecture Notes in Educational Technology
Abstract
CoffeeMush is an innovative and sustainable project developed as part of the European Project Semester (EPS) at ISEP in 2024. This student project aims to tackle waste management environmental problems by turning coffee waste into mushrooms, a valuable food source. CoffeeMush consists of a smart device providing optimal conditions for mushroom cultivation, complemented by a user-friendly Android application for remote monitoring and control. The design was guided by ethical, sustainability, market and technical considerations. The paper describes the theoretical background of the project, the technical design, and the prototype development and testing. The results show the feasibility of CoffeeMush as a practical and environmentally friendly solution for urban mushroom cultivation, and its impact on sustainable food production and waste reduction. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025.
2025
Autores
Faber, A; Torres, Â; Boucher, E; Ljungkvist, F; Hauspie, L; Spaas, S; Duarte, J; Malheiro, B; Ribeiro, C; Justo, J; Silva, F; Ferreira, P; Guedes, P;
Publicação
Lecture Notes in Educational Technology
Abstract
In the spring of 2023, a team of European Project Semester (EPS) students enrolled at the Instituto Superior de Engenharia do Porto (ISEP) chose to foster socialisation in urban spaces. Public spaces are ideal sites to promote social interaction and community involvement. The aim of this project is then to use such places to divert attention from smartphones by promoting physical social interaction. In recent years, the combination of interactive games and technology has emerged as a potential strategy to increase the use and allure of public areas. The proposed solution, named Shift it, is a puzzle game that combines technology with old school gaming, providing a fun and unique socialising experience. The game, to be installed in public areas, has as key features inclusiveness (invites all people to play), fun (creates a healthy competitive setup) and empathy (creates puzzles by taking and scrambling user pictures). This paper presents the proposed design, which was based on state-of-the-art, ethics, market and sustainability analyses, followed by the development and testing of a proof-of-concept prototype. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025.
2025
Autores
de Arriba-Pérez, F; García-Méndez, S; Leal, F; Malheiro, B; Burguillo, JC;
Publicação
INTEGRATED COMPUTER-AIDED ENGINEERING
Abstract
Social media platforms, increasingly used as news sources for varied data analytics, have transformed how information is generated and disseminated. However, the unverified nature of this content raises concerns about trustworthiness and accuracy, potentially negatively impacting readers' critical judgment due to disinformation. This work aims to contribute to the automatic data quality validation field, addressing the rapid growth of online content on wiki pages. Our scalable solution includes stream-based data processing with feature engineering, feature analysis and selection, stream-based classification, and real-time explanation of prediction outcomes. The explainability dashboard is designed for the general public, who may need more specialized knowledge to interpret the model's prediction. Experimental results on two datasets attain approximately 90% values across all evaluation metrics, demonstrating robust and competitive performance compared to works in the literature. In summary, the system assists editors by reducing their effort and time in detecting disinformation.
2025
Autores
García-Méndez, S; de Arriba-Pérez, F; Leal, F; Veloso, B; Malheiro, B; Burguillo-Rial, JC;
Publicação
SCIENTIFIC REPORTS
Abstract
The public transportation sector generates large volumes of sensor data that, if analyzed adequately, can help anticipate failures and initiate maintenance actions, thereby enhancing quality and productivity. This work contributes to a real-time data-driven predictive maintenance solution for Intelligent Transportation Systems. The proposed method implements a processing pipeline comprised of sample pre-processing, incremental classification with Machine Learning models, and outcome explanation. This novel online processing pipeline has two main highlights: (i) a dedicated sample pre-processing module, which builds statistical and frequency-related features on the fly, and (ii) an explainability module. This work is the first to perform online fault prediction with natural language and visual explainability. The experiments were performed with the Metropt data set from the metro operator of Porto, Portugal. The results are above 98 % for f-measure and 99 % for accuracy. In the context of railway predictive maintenance, achieving these high values is crucial due to the practical and operational implications of accurate failure prediction. In the specific case of a high f-measure, this ensures that the system maintains an optimal balance between detecting the highest possible number of real faults and minimizing false alarms, which is crucial for maximizing service availability. Furthermore, the accuracy obtained enables reliability, directly impacting cost reduction and increased safety. The analysis demonstrates that the pipeline maintains high performance even in the presence of class imbalance and noise, and its explanations effectively reflect the decision-making process. These findings validate the methodological soundness of the approach and confirm its practical applicability for supporting proactive maintenance decisions in real-world railway operations. Therefore, by identifying the early signs of failure, this pipeline enables decision-makers to understand the underlying problems and act accordingly swiftly.
2025
Autores
Pajón-Sanmartín, A; De Arriba-Pérez, F; García-Méndez, S; Leal, F; Malheiro, B; Burguillo-Rial, JC;
Publicação
IEEE ACCESS
Abstract
Transformer models have significantly advanced the field of emotion recognition. However, there are still open challenges when exploring open-ended queries for Large Language Models (llms). Although current models offer good results, automatic emotion analysis in open texts presents significant challenges, such as contextual ambiguity, linguistic variability, and difficulty interpreting complex emotional expressions. These limitations make the direct application of generalist models difficult. Accordingly, this work compares the effectiveness of fine-tuning and prompt engineering in emotion detection in three distinct scenarios: (i) performance of fine-tuned pre-trained models and general-purpose llms using simple prompts; (ii) effectiveness of different emotion prompt designs with llms; and (iii) impact of emotion grouping techniques on these models. Experimental tests attain metrics above 70% with a fine-tuned pre-trained model for emotion recognition. Moreover, the findings highlight that llms require structured prompt engineering and emotion grouping to enhance their performance. These advancements improve sentiment analysis, human-computer interaction, and understanding of user behavior across various domains.
2025
Autores
Méndez, SG; Arriba Pérez, Fd; Leal, F; Veloso, B; Malheiro, B; Burguillo Rial, JC;
Publicação
CoRR
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.